Question
Question: Find the value of \(\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)...
Find the value of tan(4π+21cos−1ba)+tan(4π−21cos−1ba)
(A). b2a (B). ba (C). ab (D). a2b
Solution
Hint: Solve by using simple trigonometric identities of tanθ and cosθ.
Given tan(4π+21cos−1ba)+tan(4π−21cos−1ba) …(1)
Let 21cos−1ba=θ
∴cos−1ba=2θ cos2θ=ba …(2)
Put the value of 21cos−1ba=θ in equation (1), we get
⇒tan(4π+θ)+tan(4π−θ) …(3)
We know that, tan(A+B)=1−tanAtanBtanA+tanBand tan(A−B)=1+tanAtanBtanA−tanB
Using above identities in(3), we get
⇒1−tan4πtanθtan4π+tanθ+1+tan4πtanθtan4π−tanθ
Putting the value of tan4π=1 in above equation, we get
⇒1−1tanθ1+tanθ+1+1tanθ1−tanθ ⇒1−tanθ1+tanθ+1+tanθ1−tanθ
Using cross multiplication, we get
Taking 2 common from numerator, we get
⇒2(1−tan2θ1+tan2θ)
We know that cos2θ=1+tan2θ1−tan2θ. Hence, we can write above equation as:
⇒(cos2θ)2
Now, putting the value of cos2θ from equation(2)in above equation, we get
⇒(ba)2 ⇒a2b
∴Correct option is (D).
Note: In these types of problems, one should always try to convert the equation to some trigonometric identity by either taking out the common terms from the equations or try to minimize it by using the identities.