Solveeit Logo

Question

Question: Find the value of \(\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)...

Find the value of tan(π4+12cos1ab)+tan(π412cos1ab)\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)
(A). 2ab (B). ab (C). ba (D). 2ba  \left( A \right).{\text{ }}\dfrac{{2a}}{b} \\\ \left( B \right).{\text{ }}\dfrac{a}{b} \\\ \left( C \right).{\text{ }}\dfrac{b}{a} \\\ \left( D \right).{\text{ }}\dfrac{{2b}}{a} \\\

Explanation

Solution

Hint: Solve by using simple trigonometric identities of tanθ\tan \theta and cosθ\cos \theta .

Given tan(π4+12cos1ab)+tan(π412cos1ab) (1)\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right){\text{ }} \ldots \left( 1 \right)
Let 12cos1ab=θ\dfrac{1}{2}{\cos ^{ - 1}}\dfrac{a}{b} = \theta
cos1ab=2θ cos2θ=ab (2)  \therefore {\cos ^{ - 1}}\dfrac{a}{b} = 2\theta \\\ \cos 2\theta = \dfrac{a}{b}{\text{ }} \ldots \left( 2 \right) \\\
Put the value of 12cos1ab=θ\dfrac{1}{2}{\cos ^{ - 1}}\dfrac{a}{b} = \theta in equation (1)\left( 1 \right), we get
tan(π4+θ)+tan(π4θ) (3)\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) + \tan \left( {\dfrac{\pi }{4} - \theta } \right){\text{ }} \ldots \left( 3 \right)
We know that, tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}and tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}
Using above identities in(3)\left( 3 \right), we get
tanπ4+tanθ1tanπ4tanθ+tanπ4tanθ1+tanπ4tanθ\Rightarrow \dfrac{{\tan \dfrac{\pi }{4} + \tan \theta }}{{1 - \tan \dfrac{\pi }{4}\tan \theta }} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan \dfrac{\pi }{4}\tan \theta }}
Putting the value of tanπ4=1\tan \dfrac{\pi }{4} = 1 in above equation, we get
1+tanθ11tanθ+1tanθ1+1tanθ 1+tanθ1tanθ+1tanθ1+tanθ  \Rightarrow \dfrac{{1 + \tan \theta }}{{1 - 1\tan \theta }} + \dfrac{{1 - \tan \theta }}{{1 + 1\tan \theta }} \\\ \Rightarrow \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} + \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }} \\\
Using cross multiplication, we get

(1+tanθ)2+(1tanθ)2(1tanθ)(1+tanθ) 1+2tanθ+tan2θ+12tanθ+tan2θ(1)2(tanθ)2 [(a+b)2=a2+2ab+b2 and (ab)2=a22ab+b2] 2+2tan2θ1tan2θ  \Rightarrow \dfrac{{{{\left( {1 + \tan \theta } \right)}^2} + {{\left( {1 - \tan \theta } \right)}^2}}}{{\left( {1 - \tan \theta } \right)\left( {1 + \tan \theta } \right)}} \\\ \Rightarrow \dfrac{{1 + 2\tan \theta + {{\tan }^2}\theta + 1 - 2\tan \theta + {{\tan }^2}\theta }}{{{{\left( 1 \right)}^2} - {{\left( {\tan \theta } \right)}^2}}}{\text{ }}\left[ {\because {{\left( {a + b} \right)}^2} = {a^2} + 2ab + {b^2}{\text{ and }}{{\left( {a - b} \right)}^2} = {a^2} - 2ab + {b^2}} \right] \\\ \Rightarrow \dfrac{{2 + 2{{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }} \\\

Taking 22 common from numerator, we get
2(1+tan2θ1tan2θ)\Rightarrow 2\left( {\dfrac{{1 + {{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }}} \right)
We know that cos2θ=1tan2θ1+tan2θ\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}. Hence, we can write above equation as:
2(cos2θ)\Rightarrow \dfrac{2}{{\left( {\cos 2\theta } \right)}}
Now, putting the value of cos2θ\cos 2\theta from equation(2)\left( 2 \right)in above equation, we get
2(ab) 2ba  \Rightarrow \dfrac{2}{{\left( {\dfrac{a}{b}} \right)}} \\\ \Rightarrow \dfrac{{2b}}{a} \\\
\therefore Correct option is (D)\left( D \right).

Note: In these types of problems, one should always try to convert the equation to some trigonometric identity by either taking out the common terms from the equations or try to minimize it by using the identities.