Solveeit Logo

Question

Question: Find the value of \( \tan \left( {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right) + {{\tan }^{ - 1}}\l...

Find the value of tan(cos1(45)+tan1(23))\tan \left( {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right)

Explanation

Solution

Hint : Convert cos1{\cos ^{ - 1}} into tan1{\tan ^{ - 1}} and then use the formula of inverse trigonometric functions to solve the question. We also use tan(A+B) to arrive at the result.

Complete step-by-step answer :
We need to find the value of
tan(cos1(45)+tan1(23))\tan \left( {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) . . . (1)
Let cos1(45)=θ{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \theta
By taking cosec to both the sides, we get
cos(cos1(45))=cosθ\cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right) = \cos \theta
45=cosθ\Rightarrow \dfrac{4}{5} = \cos \theta (cos(cos1x)=x,1x1)\left( {\because \cos ({{\cos }^{ - 1}}x) = x, - 1 \leqslant x \leqslant 1} \right)
Rearranging it, we get
cosθ=45\Rightarrow \cos \theta = \dfrac{4}{5}
Taking square to both the sides, we get
cos2θ=(45)2{\cos ^2}\theta = {\left( {\dfrac{4}{5}} \right)^2}
cos2θ=1625\Rightarrow {\cos ^2}\theta = \dfrac{{16}}{{25}}
Taking reciprocal, we get
1cos2θ=2516\dfrac{1}{{{{\cos }^2}\theta }} = \dfrac{{25}}{{16}}
sec2θ=2516\Rightarrow {\sec ^2}\theta = \dfrac{{25}}{{16}} (secθ=1cosθ)\left( {\because \sec \theta = \dfrac{1}{{\cos \theta }}} \right)
1+tan2θ=2516\Rightarrow 1 + {\tan ^2}\theta = \dfrac{{25}}{{16}} (sec2θ=1+tan2θ)\left( {\because {{\sec }^2}\theta = 1 + {{\tan }^2}\theta } \right)
Simplifying it, we get
tan2θ=25161{\tan ^2}\theta = \dfrac{{25}}{{16}} - 1
tan2θ=251616\Rightarrow {\tan ^2}\theta = \dfrac{{25 - 16}}{{16}}
tan2θ=916\Rightarrow {\tan ^2}\theta = \dfrac{9}{{16}}
By taking square root to both the sides, we get
tanθ=34\Rightarrow \tan \theta = \dfrac{3}{4}
Taking tan1{\tan ^{ - 1}} to both the sides, we get
tan1(tanθ)=tan1(34){\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)
θ=tan1(34)\Rightarrow \theta = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) (tan1(tanθ)=θ)\left( {\because {{\tan }^{ - 1}}(\tan \theta ) = \theta } \right)
Therefore, cos1(45)=θ=tan1(34){\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \theta = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)
Put this value in equation (1)
tan(cos1(34)+tan123)\Rightarrow \tan \left( {{{\cos }^{ - 1}}\left( {\dfrac{3}{4}} \right) + {{\tan }^{ - 1}}\dfrac{2}{3}} \right)
=tan(tan1(34)+tan123)= \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{3}{4}} \right) + {{\tan }^{ - 1}}\dfrac{2}{3}} \right)
= \tan \left\\{ {{{\tan }^{ - 1}}\left( {\dfrac{{\dfrac{3}{4} + \dfrac{2}{3}}}{{1 - \dfrac{3}{4} \times \dfrac{2}{3}}}} \right)} \right\\} (tan1x+tan1y=tan1(x+y1xy))\left( {\because {{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y = {{\tan }^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)} \right)
By simplifying the above equation, we get
= \tan \left\\{ {{{\tan }^{ - 1}}\left( {\dfrac{{\dfrac{{9 + 8}}{{12}}}}{{1 - \dfrac{1}{2}}}} \right)} \right\\}
= \tan \left\\{ {{{\tan }^{ - 1}}\left( {\dfrac{{\dfrac{{17}}{{12}}}}{{\dfrac{1}{2}}}} \right)} \right\\}
= \tan \left\\{ {{{\tan }^{ - 1}}\left( {\dfrac{{17}}{{12}} \times 2} \right)} \right\\}
=tan[tan1(176)]= \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{17}}{6}} \right)} \right]
=176= \dfrac{{17}}{6} (tan(tan1x)=x)\left( {\because \tan ({{\tan }^{ - 1}}x) = x} \right)
Therefore, the value of tan(cos1(45)+tan1(23))=176\tan \left( {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) = \dfrac{{17}}{6}

Note : To solve such types of questions, first think about the formula that could be used to solve the question. Like in this question, all the terms were in tan\tan except one term. So it was clear that the formula that has tan1{\tan ^{ - 1}} in it should be used. And for that, we converted cos1{\cos ^{ - 1}} into tan1{\tan ^{ - 1}} .