Solveeit Logo

Question

Question: Find the value of \(\tan \left( 65-\theta \right)-\cot \left( 25+\theta \right)-\sec \left( 55+\thet...

Find the value of tan(65θ)cot(25+θ)sec(55+θ)+csc(35θ)\tan \left( 65-\theta \right)-\cot \left( 25+\theta \right)-\sec \left( 55+\theta \right)+\csc \left( 35-\theta \right) .

Explanation

Solution

To find the value of the given expression, we have to convert tan(65θ)\tan \left( 65-\theta \right) into cot by using the formula cot(90θ)=tanθ\cot \left( 90-\theta \right)=\tan \theta . We also have to convert csc(35θ)\csc \left( 35-\theta \right) into sec by using the formula cscθ=sec(90θ)\csc \theta =\sec \left( 90-\theta \right) . Then, we have to substitute the resultant values in the given expression and simplify.

Complete step-by-step solution:
We have to find the value of tan(65θ)cot(25+θ)sec(55+θ)+csc(35θ)\tan \left( 65-\theta \right)-\cot \left( 25+\theta \right)-\sec \left( 55+\theta \right)+\csc \left( 35-\theta \right) . We know that cot(90θ)=tanθ\cot \left( 90-\theta \right)=\tan \theta . Therefore, we can write tan(65θ)\tan \left( 65-\theta \right) as
tan(65θ)=cot(90(65θ))=cot(25+θ)...(i)\Rightarrow \tan \left( 65-\theta \right)=\cot \left( 90-\left( 65-\theta \right) \right)=\cot \left( 25+\theta \right)...\left( i \right)
We know that cscθ=sec(90θ)\csc \theta =\sec \left( 90-\theta \right) . Therefore, we can write csc(35θ)\csc \left( 35-\theta \right) as
csc(35θ)=sec(90(35θ))=sec(55+θ)...(ii)\Rightarrow \csc \left( 35-\theta \right)=\sec \left( 90-\left( 35-\theta \right) \right)=\sec \left( 55+\theta \right)...\left( ii \right)
Let us substitute (i) and (ii) in the given expression.
cot(25+θ)cot(25+θ)sec(55+θ)+sec(55+θ) =0 \begin{aligned} & \Rightarrow \cot \left( 25+\theta \right)-\cot \left( 25+\theta \right)-\sec \left( 55+\theta \right)+\sec \left( 55+\theta \right) \\\ & =0 \\\ \end{aligned}
Hence, the value of tan(65θ)cot(25+θ)sec(55+θ)+csc(35θ)\tan \left( 65-\theta \right)-\cot \left( 25+\theta \right)-\sec \left( 55+\theta \right)+\csc \left( 35-\theta \right) is 0.

Note: Students must be thorough with trigonometric formulas and properties. They must note that any trigonometric function with angles (180θ),(180+θ),(360θ) and (360+θ)\left( 180-\theta \right),\left( 180+\theta \right),\left( 360-\theta \right)\text{ and }\left( 360+\theta \right) will result in the same trigonometric function with angle θ\theta provided the sign of the function varies. All the functions will be positive at angles (90θ)\left( 90-\theta \right) and (360+θ)\left( 360+\theta \right) . Sine and cosec will be positive at angles (90+θ)\left( 90+\theta \right) and (180θ)\left( 180-\theta \right) . At all other angles, these will be negative. Tan and cot will be positive at angles (180+θ)\left( 180+\theta \right) and (270θ)\left( 270-\theta \right) . At all other angles, these will be negative. Cos and sec will be positive at (270+θ)\left( 270+\theta \right) and (360θ)\left( 360-\theta \right) . At all other angles, these will be negative.
Students can also convert cot(25+θ)\cot \left( 25+\theta \right) to tan(65θ)\tan \left( 65-\theta \right) and sec(55+θ)\sec \left( 55+\theta \right) to csc(35θ)\csc \left( 35-\theta \right) and simplify. This method is shown below.
We know that tan(90θ)=cotθ\tan \left( 90-\theta \right)=\cot \theta . Therefore, we can write cot(25+θ)\cot \left( 25+\theta \right) as
cot(25+θ)=tan(90(25+θ))=tan(65θ)...(a)\Rightarrow \cot \left( 25+\theta \right)=\tan \left( 90-\left( 25+\theta \right) \right)=\tan \left( 65-\theta \right)...\left( a \right)
We know that csc(90θ)=secθ\csc \left( 90-\theta \right)=\sec \theta . Therefore, we can write sec(55+θ)\sec \left( 55+\theta \right) as
sec(55+θ)=csc(90(55+θ))=csc(35θ)...(b)\Rightarrow \sec \left( 55+\theta \right)=\csc \left( 90-\left( 55+\theta \right) \right)=\csc \left( 35-\theta \right)...\left( b \right)
Let us substitute (a) and (b) in the given expression.
tan(65θ)tan(65θ)csc(35θ)+csc(35θ) =0 \begin{aligned} & \Rightarrow \tan \left( 65-\theta \right)-\tan \left( 65-\theta \right)-\csc \left( 35-\theta \right)+\csc \left( 35-\theta \right) \\\ & =0 \\\ \end{aligned}