Solveeit Logo

Question

Question: Find the value of \(\tan \left( {3{{\tan }^{ - 1}}3} \right) + \cos \left( {3{{\cos }^{ - 1}}\left( ...

Find the value of tan(3tan13)+cos(3cos1(13))+1\tan \left( {3{{\tan }^{ - 1}}3} \right) + \cos \left( {3{{\cos }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) + 1

(A) 11

(B) 913\dfrac{9}{{13}}

(C) 427\dfrac{4}{{27}}

(D) 295351\dfrac{{295}}{{351}}

Explanation

Solution

In this question, you can simplify using the formulas of tan3A\tan 3A and cos3A\cos 3A. Calculate tan(3tan13)\tan \left( {3{{\tan }^{ - 1}}3} \right) and cos(3cos1(13))\cos \left( {3{{\cos }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) separately and put the calculated values in the question and then simplify to get the result.

Formula used:

Here we use the formula according to the question, we need tan3A=3tanAtan3A13tan2A\tan 3A = \dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}} and cos3A=4cos3A3cosA\cos 3A = 4{\cos ^3}A - 3\cos A

Complete step-by-step answer:

We are given that, tan(3tan13)+cos(3cos1(13))+1\tan \left( {3{{\tan }^{ - 1}}3} \right) + \cos \left( {3{{\cos }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) + 1

Now, we are using the formula to calculate:

tan3A=3tanAtan3A13tan2A\tan 3A = \dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}} here in this part of the question that is tan(3tan13)\tan \left( {3{{\tan }^{ - 1}}3} \right) where A=tan13A = {\tan ^{ - 1}}3

By substituting the value of A in the formula we get, =3tan(tan13)tan3(tan13)13tan2(tan13) = \dfrac{{3\tan \left( {{{\tan }^{ - 1}}3} \right) - {{\tan }^3}\left( {{{\tan }^{ - 1}}3} \right)}}{{1 - 3{{\tan }^2}\left( {{{\tan }^{ - 1}}3} \right)}} and as we know tan(tan1A)=A\tan ({\tan ^{ - 1}}A) = A .

Therefore, = 33(3)31(3)3\dfrac{{3 * 3 - {{\left( 3 \right)}^3}}}{{1 - {{\left( 3 \right)}^3}}}

On simplifying we get,

=927127 = \dfrac{{9 - 27}}{{1 - 27}}

=1826 = \dfrac{{ - 18}}{{ - 26}}

Cancelling negative sign and dividing by 2 from both numerator and denominator.

We get, =913 = \dfrac{9}{{13}}

Hence, tan(3tan13)\tan \left( {3{{\tan }^{ - 1}}3} \right) =913 = \dfrac{9}{{13}}

Similarly we can find out for cos(3cos1(13))\cos \left( {3{{\cos }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) by using the formula cos3A=4cos3A3cosA\cos 3A = 4{\cos ^3}A - 3\cos A,

Here, A=cos1(13)A = {\cos ^{ - 1}}\left( {\dfrac{1}{3}} \right)

By substituting the value of A in the formula we get,

=4cos3(cos1(13))3cos(cos1(13)) = 4{\cos ^3}\left( {{{\cos }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) - 3\cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)

As, we know cos(cos1A)=A\cos ({\cos ^{ - 1}}A) = A

Therefore, 4(3)31 \Rightarrow \dfrac{4}{{{{\left( 3 \right)}^3}}} - 1

On simplifying we get,

4271 \Rightarrow \dfrac{4}{{27}} - 1

By taking L.C.M and simplifying we get,

42727 \Rightarrow \dfrac{{4 - 27}}{{27}}

2327 \Rightarrow \dfrac{{ - 23}}{{27}}

Hence, cos(3cos1(13))\cos \left( {3{{\cos }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) = 2327\dfrac{{ - 23}}{{27}}

Putting all the values of tan(3tan13)\tan \left( {3{{\tan }^{ - 1}}3} \right) and cos(3cos1(13))\cos \left( {3{{\cos }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) on given equation:

We get,

= 9132327+1\dfrac{9}{{13}} - \dfrac{{23}}{{27}} + 1

By taking L.C.M and simplifying we get,

= 243299+351351\dfrac{{243 - 299 + 351}}{{351}}

= 594299351\dfrac{{594 - 299}}{{351}}

= 295351\dfrac{{295}}{{351}}

Hence, tan(3tan13)+cos(3cos13)+1\tan \left( {3{{\tan }^{ - 1}}3} \right) + \cos \left( {3{{\cos }^{ - 1}}3} \right) + 1 = 295351\dfrac{{295}}{{351}}

So, option (D) is correct.

Additional Information: Trigonometric identities are the formulas which include trigonometric functions. These trigonometric formulas help us to solve the question in a simpler way. There are a very large number of identities that can be used in various fields and have a lot of applications.

Note: These types of questions are done with the help of trigonometric formulas. Use the formulas according to the ask of the question. And simplify the question to get the desired result by putting the values.