Solveeit Logo

Question

Question: Find the value of \[\tan \left( {{{225}^ \circ }} \right)\]....

Find the value of tan(225)\tan \left( {{{225}^ \circ }} \right).

Explanation

Solution

We need to find the value of tan(225)\tan \left( {{{225}^ \circ }} \right). We see that we can write 225{225^ \circ } as 225=180+45{225^ \circ } = {180^ \circ } + {45^ \circ }. Then, we know π=180\pi = {180^ \circ }. After that we know, π+θ\pi + \theta lies in third quadrant if θ<90\theta < {90^ \circ } and tanθ\tan \theta is positive if θ\theta lies in the third quadrant. Also, tan(π+θ)=tanθ\tan \left( {\pi + \theta } \right) = \tan \theta . So, we will find the value of tan(225)\tan \left( {{{225}^ \circ }} \right) using the above properties.

Complete step by step answer:
We need to find the value of tan(225)\tan \left( {{{225}^ \circ }} \right). Writing 225{225^ \circ } as a sum of 180{180^ \circ } and 45{45^ \circ }, we have
225=180+45{225^ \circ } = {180^ \circ } + {45^ \circ }
So, tan(225)=tan(180+45)\tan \left( {{{225}^ \circ }} \right) = \tan \left( {{{180}^ \circ } + {{45}^ \circ }} \right)
As we know, π=180\pi = {180^ \circ }, we can write
tan(225)=tan(180+45)=tan(π+45)\tan \left( {{{225}^ \circ }} \right) = \tan \left( {{{180}^ \circ } + {{45}^ \circ }} \right) = \tan \left( {\pi + {{45}^ \circ }} \right)
As 45<90{45^ \circ } < {90^ \circ }, π+45\pi + {45^ \circ } lies in third quadrant and so tan(π+45)\tan \left( {\pi + {{45}^ \circ }} \right) will have positive value.
And, tan(π+θ)=tanθ\tan \left( {\pi + \theta } \right) = \tan \theta . So, the equation becomes
tan(225)=tan(180+45)=tan(π+45)\Rightarrow \tan \left( {{{225}^ \circ }} \right) = \tan \left( {{{180}^ \circ } + {{45}^ \circ }} \right) = \tan \left( {\pi + {{45}^ \circ }} \right)
Taking θ=45\theta = {45^ \circ }, we get
tan(225)=tan(180+45)=tan(π+45)=tan45\Rightarrow \tan \left( {{{225}^ \circ }} \right) = \tan \left( {{{180}^ \circ } + {{45}^ \circ }} \right) = \tan \left( {\pi + {{45}^ \circ }} \right) = \tan {45^ \circ }
As we know the value of tan45\tan {45^ \circ }, we will substitute the value.
Putting tan45=1\tan {45^ \circ } = 1, we get
tan(π+45)\tan \left( {\pi + {{45}^ \circ }} \right)
=tan45=1= \tan {45^ \circ } = 1

Therefore, we get tan(225)=1\tan \left( {{{225}^ \circ }} \right) = 1.

Note: While we are finding the trigonometric value of a particular angle, we need to decompose in such a way that we know the value of the angle we will consider as θ\theta in π+θ,π2+θ,3π2+θ\pi + \theta ,\dfrac{\pi }{2} + \theta ,\dfrac{{3\pi }}{2} + \theta and 2π+θ2\pi + \theta . Also, we need to consider that tan(π+θ)=tanθ\tan \left( {\pi + \theta } \right) = \tan \theta , if π+θ\pi + \theta lies in third or first quadrant and tan(π+θ)=tanθ\tan \left( {\pi + \theta } \right) = - \tan \theta , if π+θ\pi + \theta lies in second or fourth quadrant.