Solveeit Logo

Question

Question: Find the value of \(\tan \left( {{{15}^ \circ }} \right)\) using half angle formula....

Find the value of tan(15)\tan \left( {{{15}^ \circ }} \right) using half angle formula.

Explanation

Solution

The given problem can be solved by using the half angle formula of tangent. Use of the half angle formula helps us to convert tan(2θ)\tan \left( {2\theta } \right) to an expression consisting of tan(θ)\tan \left( \theta \right) .

Half angle formula for tangent is: tan(2x)=2tan(x)1tan2(x)\tan \left( {2x} \right) = \dfrac{{2\tan \left( x \right)}}{{1 - {{\tan }^2}\left( x \right)}} . This formula can be used to find a quadratic equation in tan(15)\tan \left( {{{15}^ \circ }} \right) as we know the value of tan(30)\tan \left( {{{30}^ \circ }} \right) .

Complete step by step solution:
The given problem requires us to find the value of tan(15)\tan \left( {{{15}^ \circ }} \right) using half angle formula. The half angle formula for tangent is: tan(2x)=2tan(x)1tan2(x)\tan \left( {2x} \right) = \dfrac{{2\tan \left( x \right)}}{{1 - {{\tan }^2}\left( x \right)}} .

So, considering x=15x = {15^ \circ }, we get to a quadratic equation in tan(15)\tan \left( {{{15}^ \circ }} \right) using the formula.

So, tan(2×15)=2tan(15)1tan2(15)\tan \left( {2 \times {{15}^ \circ }} \right) = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}} .
=tan(30)=2tan(15)1tan2(15)= \tan \left( {{{30}^ \circ }} \right) = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}}

Now, we know that the value of tan(30)\tan \left( {{{30}^ \circ }} \right) is 13\dfrac{1}{{\sqrt 3 }} .

So, we get the equation as:
=13=2tan(15)1tan2(15)= \dfrac{1}{{\sqrt 3 }} = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}}

Cross multiplying the fractions and simplifying the calculations, we get,
=1tan2(15)=23tan(15)= 1 - {\tan ^2}\left( {{{15}^ \circ }} \right) = 2\sqrt 3 \tan \left( {{{15}^ \circ }} \right)

Rearranging the equation into standard form of quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0, we get,
=tan2(15)+23tan(15)1=0= {\tan ^2}\left( {{{15}^ \circ }} \right) + 2\sqrt 3 \tan \left( {{{15}^ \circ }} \right) - 1 = 0

Now, the above quadratic equation can be solved by various methods such as: Completing the square method, Splitting the middle term method, factorisation method and using the quadratic formula.

We would use a quadratic formula to solve the above equation as this method involves minimal calculations. So, Let tan(15)=y\tan \left( {{{15}^ \circ }} \right) = y. Then, the equation becomes y2+23y1=0{y^2} + 2\sqrt 3 y - 1 = 0 .

Comparing the equation y2+23y1=0{y^2} + 2\sqrt 3 y - 1 = 0 with the standard form of quadratic equation, ax2+bx+c=0a{x^2} + bx + c = 0, we get, a=1a = 1, b=23b = 2\sqrt 3 and c=1c = - 1 .

So, Using quadratic formula,
y=b±b24ac2ay = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}

Putting the values,
=23±(23)24(1)(1)2(1)= \dfrac{{ - 2\sqrt 3 \pm \sqrt {{{\left( {2\sqrt 3 } \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}
=23±12+42= \dfrac{{ - 2\sqrt 3 \pm \sqrt {12 + 4} }}{2}

Simplifying further,
=23±42= \dfrac{{ - 2\sqrt 3 \pm 4}}{2}
=(3±2)= \left( { - \sqrt 3 \pm 2} \right)
So, either y=(3+2)y = \left( { - \sqrt 3 + 2} \right) or y=(32)y = \left( { - \sqrt 3 - 2} \right) .

Substituting back tan(15)=y\tan \left( {{{15}^ \circ }} \right) = y, we get,
either tan(15)=(3+2)\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 + 2} \right) or tan(15)=(32)\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 - 2} \right) .

Since, the angle is acute. Hence, it would lie in the first quadrant. So, tan(15)\tan \left( {{{15}^ \circ }} \right) must be positive.

Hence, the value oftan(15)=(3+2)\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 + 2} \right) .

Note: The above question can also be solved by using compound angle formulae instead of half angle formulae such as tan(A+B)=(tanA+tanB1tanAtanB)\tan (A + B) = \left( {\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right) . This method can also be used to get to the correct answer of the given problem.