Question
Mathematics Question on Inverse Trigonometric Functions
Find the value of tan21[sin−11+x22x+cos−11+y21−y2],∣x∣<1,y>0andxy<1
Answer
Let x = tan θ.
Then, θ = tan−1x.
sin−112x+x2=sin−1(1+tan2θ2tanθ)=sin−1(sin2θ)=2θ=2tan−1x
Let y = tan Φ. Then, Φ = tan−1y.
cos−11+y21−y2=cos−1(1+tan2Φ1−tan2Φ)=cos−1(cos2Φ)=2Φ=2tan−1y
∴tan21[sin−112x+x2+cos−11+y21−y2]
= tan21[2tan−1x+2tan−1y]
=tan[tan−1x+tan−1y]
=tan[tan−1(1−xyx+y)]
=1−xyx+y