Solveeit Logo

Question

Question: Find the value of \[\tan \dfrac{\pi }{8}\]....

Find the value of tanπ8\tan \dfrac{\pi }{8}.

Explanation

Solution

Here, we need to find the value of tanπ8\tan \dfrac{\pi }{8}. We will use the formula for tangent of a double angle to form a quadratic equation in terms of tanπ8\tan \dfrac{\pi }{8}. Then, using the quadratic formula, we will find the value of tanπ8\tan \dfrac{\pi }{8}.

Formula Used: The tangent of a double angle is given by the formula tan2A=2tanA1tan2A\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}.
The quadratic formula states that the roots of a quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 are given by x=b±D2ax = \dfrac{{ - b \pm \sqrt D }}{{2a}}, where DD is the discriminant given by the formula D=b24acD = {b^2} - 4ac.

Complete step-by-step answer:
We will use the formula for tangent of a double angle to find the value of tanπ8\tan \dfrac{\pi }{8}.
The tangent of a double angle is given by the formula tan2A=2tanA1tan2A\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}.
Substituting A=π8A = \dfrac{\pi }{8} in the formula, we get
tan(2×π8)=2tanπ81tan2π8\Rightarrow \tan \left( {2 \times \dfrac{\pi }{8}} \right) = \dfrac{{2\tan \dfrac{\pi }{8}}}{{1 - {{\tan }^2}\dfrac{\pi }{8}}}
Multiplying the terms in the equation, we get
tanπ4=2tanπ81tan2π8\Rightarrow \tan \dfrac{\pi }{4} = \dfrac{{2\tan \dfrac{\pi }{8}}}{{1 - {{\tan }^2}\dfrac{\pi }{8}}}
We know that the tangent of the angle π4\dfrac{\pi }{4} is equal to 1.
Thus, substituting tanπ4=1\tan \dfrac{\pi }{4} = 1 in the equation, we get
1=2tanπ81tan2π8\Rightarrow 1 = \dfrac{{2\tan \dfrac{\pi }{8}}}{{1 - {{\tan }^2}\dfrac{\pi }{8}}}
Simplifying the equation, we get
1tan2π8=2tanπ8\Rightarrow 1 - {\tan ^2}\dfrac{\pi }{8} = 2\tan \dfrac{\pi }{8}
Rewriting the equation, we get
tan2π8+2tanπ81=0\Rightarrow {\tan ^2}\dfrac{\pi }{8} + 2\tan \dfrac{\pi }{8} - 1 = 0
Now, let x=tanπ8x = \tan \dfrac{\pi }{8}.
Therefore, the equation becomes
x2+2x1=0\Rightarrow {x^2} + 2x - 1 = 0
This is a quadratic equation.
We will use the quadratic formula to find the roots of the quadratic equation.
The quadratic formula states that the roots of a quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 are given by x=b±D2ax = \dfrac{{ - b \pm \sqrt D }}{{2a}}, where DD is the discriminant given by the formula D=b24acD = {b^2} - 4ac.
First, let us find the value of the discriminant.
Comparing the equation x2+2x1=0{x^2} + 2x - 1 = 0 with the standard form of a quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0, we get
a=1a = 1, b=2b = 2, and c=1c = - 1
Substituting a=1a = 1, b=2b = 2, and c=1c = - 1 in the formula for discriminant, we get
D=224(1)(1)\Rightarrow D = {2^2} - 4\left( 1 \right)\left( { - 1} \right)
Simplifying the expression, we get
D=4+4 D=8\begin{array}{l} \Rightarrow D = 4 + 4\\\ \Rightarrow D = 8\end{array}
Now, substituting a=1a = 1, b=2b = 2, and D=8D = 8 in the quadratic formula, we get
x=2±82×1\Rightarrow x = \dfrac{{ - 2 \pm \sqrt 8 }}{{2 \times 1}}
Simplifying the expression, we get
x=2±4×22\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {4 \times 2} }}{2}
Taking 4 out of the square root, we get
x=2±222\Rightarrow x = \dfrac{{ - 2 \pm 2\sqrt 2 }}{2}
Factoring out 2 from the numerator and simplifying, we get
x=2(1±2)2 x=1±2\begin{array}{l} \Rightarrow x = \dfrac{{2\left( { - 1 \pm \sqrt 2 } \right)}}{2}\\\ \Rightarrow x = - 1 \pm \sqrt 2 \end{array}
Therefore, either x=1+2x = - 1 + \sqrt 2 or x=12x = - 1 - \sqrt 2 .
Substituting x=tanπ8x = \tan \dfrac{\pi }{8} in the expressions, we get
tanπ8=1+2\Rightarrow \tan \dfrac{\pi }{8} = - 1 + \sqrt 2 or tanπ8=12\tan \dfrac{\pi }{8} = - 1 - \sqrt 2
We know that the angle π8\dfrac{\pi }{8} lies in the first quadrant.
Also, the tangent of any angle in the first quadrant is positive.
Therefore, the tangent of π8\dfrac{\pi }{8} cannot be equal to 12- 1 - \sqrt 2.
Thus, we get
tanπ8=1+2\tan \dfrac{\pi }{8} = - 1 + \sqrt 2
\therefore The value of tanπ8\tan \dfrac{\pi }{8} is 1+2- 1 + \sqrt 2.

Note: We can also solve this equation by first finding the sine and cosine of the angle π8\dfrac{\pi }{8}, and then dividing them to get the value of tanπ8\tan \dfrac{\pi }{8}.
Substituting A=π8A = \dfrac{\pi }{8} in the formula cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1, we can find that cos2π8=2+24{\cos ^2}\dfrac{\pi }{8} = \dfrac{{2 + \sqrt 2 }}{4}.
Substituting cos2π8=2+24{\cos ^2}\dfrac{\pi }{8} = \dfrac{{2 + \sqrt 2 }}{4} in the formula sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1, we can find that sin2π8=224{\sin ^2}\dfrac{\pi }{8} = \dfrac{{2 - \sqrt 2 }}{4}.
Dividing sin2π8=224{\sin ^2}\dfrac{\pi }{8} = \dfrac{{2 - \sqrt 2 }}{4} by cos2π8=2+24{\cos ^2}\dfrac{\pi }{8} = \dfrac{{2 + \sqrt 2 }}{4}, we get
sin2π8cos2π8=2242+24 tan2π8=222+2\begin{array}{l} \Rightarrow \dfrac{{{{\sin }^2}\dfrac{\pi }{8}}}{{{{\cos }^2}\dfrac{\pi }{8}}} = \dfrac{{\dfrac{{2 - \sqrt 2 }}{4}}}{{\dfrac{{2 + \sqrt 2 }}{4}}}\\\ \Rightarrow {\tan ^2}\dfrac{\pi }{8} = \dfrac{{2 - \sqrt 2 }}{{2 + \sqrt 2 }}\end{array}
Rationalising the denominator, we get
tan2π8=222+2×2222 tan2π8=4+24242 tan2π8=6422 tan2π8=322\begin{array}{l} \Rightarrow {\tan ^2}\dfrac{\pi }{8} = \dfrac{{2 - \sqrt 2 }}{{2 + \sqrt 2 }} \times \dfrac{{2 - \sqrt 2 }}{{2 - \sqrt 2 }}\\\ \Rightarrow {\tan ^2}\dfrac{\pi }{8} = \dfrac{{4 + 2 - 4\sqrt 2 }}{{4 - 2}}\\\ \Rightarrow {\tan ^2}\dfrac{\pi }{8} = \dfrac{{6 - 4\sqrt 2 }}{2}\\\ \Rightarrow {\tan ^2}\dfrac{\pi }{8} = 3 - 2\sqrt 2 \end{array}
Taking square root of both sides, we get
tanπ8=322\Rightarrow \tan \dfrac{\pi }{8} = \sqrt {3 - 2\sqrt 2 }
This value of tanπ8\tan \dfrac{\pi }{8} looks different from 1+2- 1 + \sqrt 2, but they are equal because the actual values of both 1+2- 1 + \sqrt 2 and 322\sqrt {3 - 2\sqrt 2 } is approximately 0.41421356{\rm{0}}{\rm{.41421356}}.