Solveeit Logo

Question

Question: Find the value of \(\tan \dfrac{{3\pi }}{4}\)....

Find the value of tan3π4\tan \dfrac{{3\pi }}{4}.

Explanation

Solution

Angle 3π4\dfrac{{3\pi }}{4} is an obtuse angle and is located in the 2nd quadrant. Use a trigonometric quadrant rule to find the value.

Complete step by step solution:
We can write tan3π4\tan \dfrac{{3\pi }}{4} = tan(41)π4\tan \dfrac{{\left( {4 - 1} \right)\pi }}{4}
=> tan3π4\tan \dfrac{{3\pi }}{4}= tan(4ππ)4\tan \dfrac{{\left( {4\pi - \pi } \right)}}{4}
=> tan3π4\tan \dfrac{{3\pi }}{4}= tan(4π4π4)\tan \left( {\dfrac{{4\pi }}{4} - \dfrac{\pi }{4}} \right)
Now in tan(4π4π4)\tan \left( {\dfrac{{4\pi }}{4} - \dfrac{\pi }{4}} \right) we can cancel 4 from numerator and denominator from sin1θ{\sin ^{ - 1}}\theta
We get, tan3π4\tan \dfrac{{3\pi }}{4}= tan(ππ4)\tan \left( {\pi - \dfrac{\pi }{4}} \right) ……equation (1)
As we know from trigonometric identity
tan(πx)\tan \left( {\pi - x} \right) = -tanx\tan x
So we can write tan(ππ4)\tan \left( {\pi - \dfrac{\pi }{4}} \right) = -tanπ4\tan \dfrac{\pi }{4}……equation (2)
So putting equation (2) in equation (1) we get
tan3π4\tan \dfrac{{3\pi }}{4} = -tanπ4\tan \dfrac{\pi }{4}
And we know, tanπ4\tan \dfrac{\pi }{4}= 1

So tan3π4\tan \dfrac{{3\pi }}{4}= -1

Note: Proof for tan(πx)\tan \left( {\pi - x} \right)
We know tanx\tan x= sinxcosx\dfrac{{\sin x}}{{\cos x}}
So, tan(πx)\tan \left( {\pi - x} \right) = sin(πx)cos(πx)\dfrac{{\sin (\pi - x)}}{{\cos (\pi - x)}}
And we know, sin(πx)\sin \left( {\pi - x} \right) = sinx\sin x
And cos(πx)\cos \left( {\pi - x} \right) = -cosx\cos x
So, tan(πx)\tan \left( {\pi - x} \right) = sinxcosx\dfrac{{\sin x}}{{ - \cos x}}
tan(πx)\tan \left( {\pi - x} \right) = - tanx\tan x.