Solveeit Logo

Question

Question: Find the value of \(\tan \dfrac{{19\pi }}{3}\)...

Find the value of tan19π3\tan \dfrac{{19\pi }}{3}

Explanation

Solution

We know, that the function y=tanxy = \tan xhas a period of π\pi or 180180^\circ , i.e. the value of tanx\tan x repeats after an interval of π\pi or 180180^\circ .
Therefore write 19π3\dfrac{{19\pi }}{3} as (6π+π3)\left( {6\pi + \dfrac{\pi }{3}} \right) and proceed.

Complete step-by-step answer:
We know that the function y=tanxy = \tan xhas a period of π\pi or 180180^\circ , i.e. the value of tanx\tan xrepeats after an interval of π\pi or 180180^\circ .
Therefore,
tan19π3tan\dfrac{{19\pi }}{3}
Above expression can be written as,
=tan(18π+π3)= tan\left( {\dfrac{{18\pi + \pi }}{3}} \right)
On separating the terms we get,
=tan(6π+π3)= tan\left( {6\pi + \dfrac{\pi }{3}} \right)
Since, 19π3\dfrac{{{\text{19}}\pi }}{{\text{3}}}lies in the first quadrant, therefore tan19π3{\text{tan}}\dfrac{{{\text{19}}\pi }}{{\text{3}}} will be positive,
tanπ3=3tan\dfrac{\pi }{3} = \sqrt 3
As tanπ3=3tan\dfrac{\pi }{3} = \sqrt 3 ,
=3= \sqrt 3
Therefore the value of tan19π3\tan \dfrac{{19\pi }}{3}is 3\sqrt 3

Note: Note the following important formulae:
1.cosx=1secx\cos x = \dfrac{1}{{\sec x}} , sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}} , tanx=1cotx\tan x = \dfrac{1}{{\cot x}}
2.sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
3.sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
4.cosec2xcot2x=1{\operatorname{cosec} ^2}x - {\cot ^2}x = 1
5.sin(x)=sinx\sin ( - x) = - \sin x
6.cos(x)=cosx\cos ( - x) = \cos x
7.tan(x)=tanx\tan ( - x) = - \tan x
8.sin(2nπ±x)=sinx , period 2π or 360\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
9.cos(2nπ±x)=cosx , period 2π or 360\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
10.tan(nπ±x)=tanx , period π or 180\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }
Sign convention:

Also, the trigonometric ratios of the standard angles are given by

| 00^\circ | 3030^\circ | 4545^\circ | 6060^\circ | 9090^\circ
---|---|---|---|---|---
Sinx\operatorname{Sin} x| 0| 12\dfrac{1}{2} | 12\dfrac{1}{{\sqrt 2 }} | 32\dfrac{{\sqrt 3 }}{2} | 1
Cosx\operatorname{Cos} x| 1| 32\dfrac{{\sqrt 3 }}{2}| 12\dfrac{1}{{\sqrt 2 }}| 12\dfrac{1}{2}| 0
Tanx\operatorname{Tan} x| 0| 13\dfrac{1}{{\sqrt 3 }} | 1| 3\sqrt 3 | Undefined
CotxCotx| undefined| 3\sqrt 3 | 1| 13\dfrac{1}{{\sqrt 3 }}| 0
cosecx\cos ecx| undefined| 2| 2\sqrt 2 | 23\dfrac{2}{{\sqrt 3 }}| 1
Secx\operatorname{Sec} x| 1| 23\dfrac{2}{{\sqrt 3 }}| 2\sqrt 2 | 2| Undefined