Question
Question: Find the value of \(\tan \dfrac{{19\pi }}{3}\)...
Find the value of tan319π
Solution
We know, that the function y=tanxhas a period of π or 180∘, i.e. the value of tanx repeats after an interval of π or 180∘.
Therefore write 319π as (6π+3π) and proceed.
Complete step-by-step answer:
We know that the function y=tanxhas a period of π or 180∘, i.e. the value of tanxrepeats after an interval of π or 180∘.
Therefore,
tan319π
Above expression can be written as,
=tan(318π+π)
On separating the terms we get,
=tan(6π+3π)
Since, 319πlies in the first quadrant, therefore tan319π will be positive,
tan3π=3
As tan3π=3,
=3
Therefore the value of tan319πis 3
Note: Note the following important formulae:
1.cosx=secx1 , sinx=cosecx1 , tanx=cotx1
2.sin2x+cos2x=1
3.sec2x−tan2x=1
4.cosec2x−cot2x=1
5.sin(−x)=−sinx
6.cos(−x)=cosx
7.tan(−x)=−tanx
8.sin(2nπ±x)=sinx , period 2π or 360∘
9.cos(2nπ±x)=cosx , period 2π or 360∘
10.tan(nπ±x)=tanx , period π or 180∘
Sign convention:
Also, the trigonometric ratios of the standard angles are given by
| 0∘| 30∘| 45∘| 60∘| 90∘
---|---|---|---|---|---
Sinx| 0| 21 | 21 | 23 | 1
Cosx| 1| 23| 21| 21| 0
Tanx| 0| 31 | 1| 3| Undefined
Cotx| undefined| 3| 1| 31| 0
cosecx| undefined| 2| 2| 32| 1
Secx| 1| 32| 2| 2| Undefined