Solveeit Logo

Question

Question: Find the value of \[\tan \dfrac{{13\pi }}{{12}}\]....

Find the value of tan13π12\tan \dfrac{{13\pi }}{{12}}.

Explanation

Solution

We have to find the value of the given trigonometric function tan13π12\tan \dfrac{{13\pi }}{{12}} . We solve this question using the concept of values of trigonometric function in various quadrants . The formula for the difference of the two angles of a tangent function . We should also have the knowledge of various values of trigonometric functions for different values of angles . First we will simplify the value of the angle of the given trigonometric function using the value of the trigonometric values in different quadrants , then we will split the angle of the given trigonometric function such that we know the exact values for that angle . Then applying the formula of the difference of the tangent function and putting the values we will get the value for the given trigonometric function.

Complete step by step answer:
Given: The value of tan13π12\tan \dfrac{{13\pi }}{{12}}. Now , we can write the given expression as : tan13π12=tan(π+π12)\tan \dfrac{{13\pi }}{{12}} = \tan \left( {\pi + \dfrac{\pi }{{12}}} \right)
Using the quadrant rules we can say that the given angle of the trigonometric function lies in the third quadrant and we know that the tan function is positive in the third quadrant so we can also write the given expression as :
tan13π12=tanπ12\tan \dfrac{{13\pi }}{{12}} = \tan \dfrac{\pi }{{12}}
Now , we have to find the value of tanπ12\tan \dfrac{\pi }{{12}} .
We can also express tanπ12\tan \dfrac{\pi }{{12}} as :
tanπ12=tan(π3π4)\tan \dfrac{\pi }{{12}} = \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right)

Now , we know that the formula for difference of two angles of tangent function is given as :
tan(ab)=tanatanb1+tana×tanb\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a \times \tan b}}
Using the formula , we get
tanπ12=tanπ3tanπ41+tanπ3×tanπ4\tan \dfrac{\pi }{{12}} = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3} \times \tan \dfrac{\pi }{4}}}
We also know the value of tangent function for different angles are given as :
tanπ3=3\tan \dfrac{\pi }{3} = \sqrt 3 and tanπ4=1\tan \dfrac{\pi }{4} = 1
Putting these values in the formula , we get
tanπ12=311+3×1\tan \dfrac{\pi }{{12}} = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 \times 1}}
tanπ12=311+3\Rightarrow \tan \dfrac{\pi }{{12}} = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }}

Now , we will rationalize the value of tanπ3=3\tan \dfrac{\pi }{3} = \sqrt 3 by multiplying both
numerator and denominator by 31\sqrt 3 - 1 .On rationalizing , we get
tanπ12=311+3×3131\tan \dfrac{\pi }{{12}} = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}}
On simplifying using the formula a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)
tanπ12=(31)2(3)2(1)2\tan \dfrac{\pi }{{12}} = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( 1 \right)}^2}}}
On further solving , we get
tanπ12=(3+123)31\tan \dfrac{\pi }{{12}} = \dfrac{{\left( {3 + 1 - 2\sqrt 3 } \right)}}{{3 - 1}}
tanπ12=(423)2\Rightarrow \tan \dfrac{\pi }{{12}} = \dfrac{{\left( {4 - 2\sqrt 3 } \right)}}{2}
Cancelling the terms , we get
tanπ12=23\therefore \tan \dfrac{\pi }{{12}} = 2 - \sqrt 3

Hence,the value of tan13π12\tan \dfrac{{13\pi }}{{12}} is 232 - \sqrt 3 .

Note: While using the formula of the difference of angles of the tangent we should take care of the signs while writing them. A slight change in any of the signs changes the whole answer. The values should be solved carefully and while using all the values should be taken care of. The formula for sum of two angles of tangent function is given as: tan(a+b)=tana+tanb1tana×tanb\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a \times \tan b}}