Question
Mathematics Question on Trigonometric Functions
Find the value of tan(α+β), given that cotα=21,α∈(π,23π) and secβ=3−5,β∈(2π,π).
A
1/11
B
2/11
C
5/11
D
3/11
Answer
2/11
Explanation
Solution
Given, cotα=21, ⇒tanα=2 and secβ=3−5 Then, tanβ=sec2β−1 ⇒tanβ=±34 But, tanβ=3−4 (∵tanβ is -ve in II quadrant) ∴tan(α+β)=1−tanα⋅tanβtanα+tanβ =1−(2)(3−4)2+(−34)=112