Solveeit Logo

Question

Question: Find the value of \(\tan {{20}^{\circ }}+4\sin {{20}^{\circ }}\) (a) \(\sqrt{3}\) (b) \(\dfrac{1...

Find the value of tan20+4sin20\tan {{20}^{\circ }}+4\sin {{20}^{\circ }}
(a) 3\sqrt{3}
(b) 13\dfrac{1}{\sqrt{3}}
(c) 1
(d) -1

Explanation

Solution

Assume the given expression as E. First of all use the conversion tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} to simplify. Now, take LCM and use the trigonometric identity 2sinacosa=sin2a2\sin a\cos a=\sin 2a. Further, break the terms of the numerator and use the identity sina+sinb=2sin(a+b2)cos(ab2)\sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) to simplify. Convert the sine function into the cosine function using the complementary angle formula sin(90θ)=cosθ\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta in the numerator and use the identity cosa+cosb=2cos(a+b2)cos(ab2)\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right). Cancel the common factors and use the values sin30=12\sin {{30}^{\circ }}=\dfrac{1}{2} and cos30=32\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} to get the answer.

Complete step by step answer:
Here we have been asked to find the value of the expression tan20+4sin20\tan {{20}^{\circ }}+4\sin {{20}^{\circ }}. Let us assume the given expression as E, so we have,
E=tan20+4sin20\Rightarrow E=\tan {{20}^{\circ }}+4\sin {{20}^{\circ }}
Using the conversion formula tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} and taking the LCM to simplify we get,
E=sin20cos20+4sin20 E=sin20+4sin20cos20cos20 E=sin20+2×(2sin20cos20)cos20 \begin{aligned} & \Rightarrow E=\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}+4\sin {{20}^{\circ }} \\\ & \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+4\sin {{20}^{\circ }}\cos {{20}^{\circ }}}{\cos {{20}^{\circ }}} \\\ & \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+2\times \left( 2\sin {{20}^{\circ }}\cos {{20}^{\circ }} \right)}{\cos {{20}^{\circ }}} \\\ \end{aligned}
Using the trigonometric identity 2sinacosa=sin2a2\sin a\cos a=\sin 2a we get,
E=sin20+2sin40cos20 E=(sin20+sin40)+sin40cos20 \begin{aligned} & \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+2\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\\ & \Rightarrow E=\dfrac{\left( \sin {{20}^{\circ }}+\sin {{40}^{\circ }} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\\ \end{aligned}
Using the identity sina+sinb=2sin(a+b2)cos(ab2)\sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) we get,
E=2sin(40+202)cos(40202)+sin40cos20 E=2sin(30)cos(10)+sin40cos20 \begin{aligned} & \Rightarrow E=\dfrac{2\sin \left( \dfrac{{{40}^{\circ }}+{{20}^{\circ }}}{2} \right)\cos \left( \dfrac{{{40}^{\circ }}-{{20}^{\circ }}}{2} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\\ & \Rightarrow E=\dfrac{2\sin \left( {{30}^{\circ }} \right)\cos \left( {{10}^{\circ }} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\\ \end{aligned}
Substituting the value sin30=12\sin {{30}^{\circ }}=\dfrac{1}{2} we get,
E=2×12×cos10+sin40cos20 E=cos10+sin40cos20 \begin{aligned} & \Rightarrow E=\dfrac{2\times \dfrac{1}{2}\times \cos {{10}^{\circ }}+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\\ & \Rightarrow E=\dfrac{\cos {{10}^{\circ }}+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\\ \end{aligned}
Now, converting the sine function into the cosine function by using the complementary angle formula sin(90θ)=cosθ\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta in the numerator we get,
E=cos10+cos50cos20\Rightarrow E=\dfrac{\cos {{10}^{\circ }}+\cos {{50}^{\circ }}}{\cos {{20}^{\circ }}}
Using the identity cosa+cosb=2cos(a+b2)cos(ab2)\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) we get,
E=2cos(50+102)cos(50102)cos20 E=2cos30cos20cos20 \begin{aligned} & \Rightarrow E=\dfrac{2\cos \left( \dfrac{{{50}^{\circ }}+{{10}^{\circ }}}{2} \right)\cos \left( \dfrac{{{50}^{\circ }}-{{10}^{\circ }}}{2} \right)}{\cos {{20}^{\circ }}} \\\ & \Rightarrow E=\dfrac{2\cos {{30}^{\circ }}\cos {{20}^{\circ }}}{\cos {{20}^{\circ }}} \\\ \end{aligned}
Using the value cos30=32\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} and cancelling the common factor we get,
E=2×32 E=3 \begin{aligned} & \Rightarrow E=2\times \dfrac{\sqrt{3}}{2} \\\ & \therefore E=\sqrt{3} \\\ \end{aligned}

So, the correct answer is “Option a”.

Note: Note that in the end you can also convert the cosine function into the sine function and then apply the suitable trigonometric identity to get the answer. But in that case you have to apply the complementary angle formula again to cancel the common factor in the denominator. You must remember all the trigonometric identities as they are used in other chapters and subjects also.