Solveeit Logo

Question

Question: Find the value of\[\tan 100^\circ + \tan 125^\circ + \tan 100^\circ \tan 125^\circ \]. A) 0 B) \...

Find the value oftan100+tan125+tan100tan125\tan 100^\circ + \tan 125^\circ + \tan 100^\circ \tan 125^\circ .
A) 0
B) 12\dfrac{1}{\begin{array}{l}2\\\\\end{array}}
C) -1
D) 1

Explanation

Solution

Here we will use the concept of trigonometry. We will first use the formula of tangent of the sum of angles to form the given expression. Then we will substitute the angles of the given expression in the formula to simplify the formula and get the required answer

Formula used:
We will use the formula of the tangent of the sum of two angles is given by the formula as follows-tan(A+B)\tan (A + B)=tanA+tanB1tanAtanB\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}

Complete step by step solution:
Now to find the value of tan100+tan125+tan100tan125\tan 100^\circ + \tan 125^\circ + \tan 100^\circ \tan 125^\circ , we will take A=100A = 100^\circ and B=125B = 125^\circ .
Thus by putting values for AA and BB in the above formula we will get,
tan(100+125)=tan100+tan1251tan100tan125\tan (100^\circ + 125^\circ ) = \dfrac{{\tan 100^\circ + \tan 125^\circ }}{{1 - \tan 100^\circ \tan 125^\circ }}
tan225=tan100+tan1251tan100tan125\tan 225^\circ = \dfrac{{\tan 100^\circ + \tan 125^\circ }}{{1 - \tan 100^\circ \tan 125^\circ }}
Now we know that, tan225=1\tan 225^\circ = 1.
Thus by putting value of tan225\tan 225^\circ in the above equation, we get
1=tan100+tan1251tan100tan1251 = \dfrac{{\tan 100^\circ + \tan 125^\circ }}{{1 - \tan 100^\circ \tan 125^\circ }}
Multiplying both sides of the above equation by (1tan100tan125)\left( {1 - \tan 100^\circ \tan 125^\circ } \right) we will get,
(1tan100tan125)1=tan100+tan1251tan100tan125(1tan100tan125)\left( {1 - \tan 100^\circ \tan 125^\circ } \right)1 = \dfrac{{\tan 100^\circ + \tan 125^\circ }}{{1 - \tan 100^\circ \tan 125^\circ }}\left( {1 - \tan 100^\circ \tan 125^\circ } \right)
1tan100tan125=tan100+tan1251 - \tan 100^\circ \tan 125^\circ = \tan 100^\circ + \tan 125^\circ
Now adding tan100tan125\tan 100^\circ \tan 125^\circ on both sides of the equation, we get
1=tan100+tan125+tan100tan1251 = \tan 100^\circ + \tan 125^\circ + \tan 100^\circ \tan 125^\circ
Therefore we get the value of tan100+tan125+tan100tan125\tan 100^\circ + \tan 125^\circ + \tan 100^\circ \tan 125^\circ is 1

Hence option (D) is the correct option.

Note:
Tangent function – In any right triangle, the tangent of an angle is the length of the opposite side divided by the length of the adjacent side.
The tangent of an angle is defined to be its sine divided by its cosine: tanA=sinAcosA\tan A = \dfrac{{\sin A}}{{\cos A}}.
Formula tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} can be derived from sin(A+B)cos(A+B)\dfrac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}} where,
sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B and cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B
Here we used tan225=1\tan 225^\circ = 1 because we can writetan225\tan 225^\circ as tan(π+45)\tan \left( {\pi + 45^\circ } \right) which is equal to tan45\tan 45^\circ .
And we know that tan45=1\tan 45^\circ = 1.
Thus, we took tan225\tan 225^\circ is equal to 1.