Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Find the value of tan1(tan7π6)tan^{-1}(tan \frac{7\pi}{6}).

Answer

We know that tan−1(tan x) = x if x∈[π2,π2][-\frac {\pi}{2}, \frac {\pi}{2}], which is the principal value branch of tan−1x.
Here,7π6\frac {7\pi}{6}[π2,π2][-\frac {\pi}{2}, \frac {\pi}{2}].
Now,tan-1(tan7π6\frac {7\pi}{6}) can be written as:
tan-1(tan7π6\frac {7\pi}{6}) = tan-1(tan 2π\pi-5π6\frac {5\pi}{6}) [tan(2π\pi-x) = -tan x]
=tan-1(-tan5π6\frac {5\pi}{6}) = tan-1(-tan5π6\frac {5\pi}{6}) = tan-1(tan(-5π6\frac {5\pi}{6})) = tan-1(tan(π\pi-5π6\frac {5\pi}{6}))
= tan-1(tan(π6\frac {\pi}{6})), where π6\frac {\pi}{6}[π2,π2][-\frac {\pi}{2}, \frac {\pi}{2}]

Therefore tan-1(tan7π6\frac {7\pi}{6}) = tan-1(tan(π6\frac {\pi}{6}) = π6\frac {\pi}{6}