Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Find the value of tan13sec1(2)tan^{-1\sqrt3-sec^{-1}(-2)} is equal to

A

π\pi

B

π3-\frac {\pi}{3}

C

π3\frac {\pi}{3}

D

2π3\frac{2\pi}{3}

Answer

π3-\frac {\pi}{3}

Explanation

Solution

Let tan13=x.tan^{-1\sqrt3=x}.
Then tanx=3=tanπ3tan\,x=\sqrt3=tan\frac{\pi}{3}.
We know that the range of principal vale branch of tan1is(π2,π2)tan^{-1}\,is \bigg(-\frac{\pi}{2},\frac{\pi}{2}\bigg)
therefore tan13=π3tan^{-1}\sqrt3=\frac{\pi}{3}
Let sec1(2)=y.sec^{-1}(2)=y.
Then, secy=2=sec(π3)=sec(ππ3)=sec2π3.sec \,y=-2=-sec(\frac{\pi}{3})=sec (\pi-\frac{\pi}{3})=sec\frac{2\pi}{3}.
We know that the range of principal vale branch of sec-1 is [0,π]π2.[0,\pi]-\\{\frac{\pi}{2}\\}.
sec1(2)=2π3.sec^{-1}(-2)=\frac{2\pi}{3}.
Hence, tan1(3)sec1(2)=π32π3=π3tan^{-1}(\sqrt3)-sec^{-1}(2)=\frac{\pi}{3}-\frac{2\pi}{3}=-\frac{\pi}{3}