Solveeit Logo

Question

Question: Find the value of \({{\tan }^{-1}}\sqrt{3}-{{\cot }^{-1}}\left( -\sqrt{3} \right)\)...

Find the value of tan13cot1(3){{\tan }^{-1}}\sqrt{3}-{{\cot }^{-1}}\left( -\sqrt{3} \right)

Explanation

Solution

We know the range of both the inverse trigonometric functions and also, 3\sqrt{3} and 3-\sqrt{3} are basic values for tan and cot inverse functions, i.e. , they are the kind of values whose values are known when they are put in the cot and tan inverse functions. Thus, we can find their values very easily. So we will find these individual values in the range of these functions and then subtract them. This will give us our answer.

Complete step by step answer:
Now, we know that the range of tan1x{{\tan }^{-1}}x is (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)
We also know that in the provided range the value of tan13=π3{{\tan }^{-1}}\sqrt{3}=\dfrac{\pi }{3}
Now, we also know that the range of cot1x{{\cot }^{-1}}x is (0,π)\left( 0,\pi \right)
We also know that in the provided range the value of cot1(3)=ππ6=5π6{{\cot }^{-1}}\left( -\sqrt{3} \right)=\pi -\dfrac{\pi }{6}=\dfrac{5\pi }{6}
Now since we know the value of both tan1(3){{\tan }^{-1}}\left( \sqrt{3} \right) and cot1(3){{\cot }^{-1}}\left( -\sqrt{3} \right) we can subtract these two values and obtain our required values.
Thus, the value of tan13cot1(3){{\tan }^{-1}}\sqrt{3}-{{\cot }^{-1}}\left( -\sqrt{3} \right)is given as:
π35π6 3π6 π2 \begin{aligned} & \Rightarrow \dfrac{\pi }{3}-\dfrac{5\pi }{6} \\\ & \Rightarrow -\dfrac{3\pi }{6} \\\ & \Rightarrow -\dfrac{\pi }{2} \\\ \end{aligned}

Thus, the value of tan13cot1(3){{\tan }^{-1}}\sqrt{3}-{{\cot }^{-1}}\left( -\sqrt{3} \right) is π2-\dfrac{\pi }{2}

Note: This question can also be done in the following way:
We know that the value of cot1(x){{\cot }^{-1}}\left( -x \right) is given as πcot1x\pi -{{\cot }^{-1}}x
So we can write the value of cot1(3){{\cot }^{-1}}\left( -\sqrt{3} \right) in the same way.
Thus, the value of cot1(3)=πcot1(3){{\cot }^{-1}}\left( -\sqrt{3} \right)=\pi -{{\cot }^{-1}}\left( \sqrt{3} \right)
So, the value of tan13cot1(3){{\tan }^{-1}}\sqrt{3}-{{\cot }^{-1}}\left( -\sqrt{3} \right)becomes:
tan13(πcot1(3)) tan13π+cot1(3) tan13+cot1(3)π \begin{aligned} & \Rightarrow {{\tan }^{-1}}\sqrt{3}-\left( \pi -{{\cot }^{-1}}\left( \sqrt{3} \right) \right) \\\ & \Rightarrow {{\tan }^{-1}}\sqrt{3}-\pi +{{\cot }^{-1}}\left( \sqrt{3} \right) \\\ & \Rightarrow {{\tan }^{-1}}\sqrt{3}+{{\cot }^{-1}}\left( \sqrt{3} \right)-\pi \\\ \end{aligned}
Now, we know that the value of tan1x+cot1x=π2{{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2} for all xRx\in \mathbb{R}
Thus the value of tan13+cot1(3)π{{\tan }^{-1}}\sqrt{3}+{{\cot }^{-1}}\left( \sqrt{3} \right)-\pi is given as:
π2π π2 \begin{aligned} & \Rightarrow \dfrac{\pi }{2}-\pi \\\ & \Rightarrow -\dfrac{\pi }{2} \\\ \end{aligned}