Solveeit Logo

Question

Question: Find the value of \({{\tan }^{-1}}\left( \tan \dfrac{5\pi }{6} \right)+{{\cos }^{-1}}\left( \cos \df...

Find the value of tan1(tan5π6)+cos1(cos13π6){{\tan }^{-1}}\left( \tan \dfrac{5\pi }{6} \right)+{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)

Explanation

Solution

Now first we will convert the given equation by writing 5π6=ππ6\dfrac{5\pi }{6}=\pi -\dfrac{\pi }{6} and 13π6=2π+π6\dfrac{13\pi }{6}=2\pi +\dfrac{\pi }{6} . Now we know that tan(πθ)=tanθ\tan \left( \pi -\theta \right)=-\tan \theta and cos(2π+θ)=cosθ\cos \left( 2\pi +\theta \right)=\cos \theta . Hence we can convert the given expression using these results. Now in the obtained expression we can apply the propertytan(θ)=tanθ\tan \left( -\theta \right)=-\tan \theta . After this we will have a simplified expression in the form of tan and cos. Now we will use the property that tan1(tanx)=x;x(π2,π2){{\tan }^{-1}}\left( \tan x \right)=x;x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) and similarly cos1(cosx)=x;x(0,2π){{\cos }^{-1}}\left( \cos x \right)=x;x\in \left( 0,2\pi \right). Hence we will get the value of the given expression.

Complete step by step answer:
Now first let us consider the given expression.
We have tan1(tan5π6)+cos1(cos13π6){{\tan }^{-1}}\left( \tan \dfrac{5\pi }{6} \right)+{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)
First we know that 5π6(π2,π2)\dfrac{5\pi }{6}\notin \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) and also 13π6(0,2π)\dfrac{13\pi }{6}\notin \left( 0,2\pi \right) . So first we will convert the given angles to simplify the given expression.
To do so we can write 5π6=ππ6\dfrac{5\pi }{6}=\pi -\dfrac{\pi }{6} and 13π6=2π+π6\dfrac{13\pi }{6}=2\pi +\dfrac{\pi }{6}
Hence we get the above expression as tan1(tan(ππ6))+cos1(cos(2π+π6)){{\tan }^{-1}}\left( \tan \left( \pi -\dfrac{\pi }{6} \right) \right)+{{\cos }^{-1}}\left( \cos \left( 2\pi +\dfrac{\pi }{6} \right) \right)
Now we know the property of tan that tan(πθ)=tanθ\tan \left( \pi -\theta \right)=-\tan \theta similarly we know that cos(2π+θ)=cosθ\cos \left( 2\pi +\theta \right)=\cos \theta .
Hence using this properties we can rewrite the above expression as
tan1(tan(π6))+cos1(cos(π6)){{\tan }^{-1}}\left( -\tan \left( \dfrac{\pi }{6} \right) \right)+{{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{6} \right) \right)
Now again we know that tan(θ)=tanθ\tan \left( -\theta \right)=-\tan \theta , using this result in the above expression we get.
tan1(tan(π6))+cos1(cos(π6)){{\tan }^{-1}}\left( \tan \left( -\dfrac{\pi }{6} \right) \right)+{{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{6} \right) \right)
Now we know that π2<π6<π2-\dfrac{\pi }{2}<-\dfrac{\pi }{6}<\dfrac{\pi }{2} and 0<π6<2π0<\dfrac{\pi }{6}<2\pi
Hence we can say π6(π2,π2)-\dfrac{\pi }{6}\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) and π6(0,2π)\dfrac{\pi }{6}\in \left( 0,2\pi \right)
Now we know that for all x(π2,π2)x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) tan1(tanx)=x{{\tan }^{-1}}\left( \tan x \right)=x and for all x(0,2π)x\in \left( 0,2\pi \right) cos1(cosx)=x{{\cos }^{-1}}\left( \cos x \right)=x .
Hence using this property in the above expression we get.
π6+π6=0-\dfrac{\pi }{6}+\dfrac{\pi }{6}=0

Hence finally we get the value of expression tan1(tan5π6)+cos1(cos13π6){{\tan }^{-1}}\left( \tan \dfrac{5\pi }{6} \right)+{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right) is 0.

Note: Now by looking at the given expression we can make the mistake by writing
cos1(cos13π6)=13π6{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)=\dfrac{13\pi }{6} and tan1(tan5π6)=5π6{{\tan }^{-1}}\left( \tan \dfrac{5\pi }{6} \right)=\dfrac{5\pi }{6} and hence we will get the final answer as 5π6+13π6=18π6=3π\dfrac{5\pi }{6}+\dfrac{13\pi }{6}=\dfrac{18\pi }{6}=3\pi . This will be wrong since that 5π6(π2,π2)\dfrac{5\pi }{6}\notin \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) and also 13π6(0,2π)\dfrac{13\pi }{6}\notin \left( 0,2\pi \right) . Hence not that for tan1(tanx)=x{{\tan }^{-1}}\left( \tan x \right)=x we must have x(π2,π2)x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) and similarly for cos1(cosx)=x{{\cos }^{-1}}\left( \cos x \right)=x we must have x(0,2π)x\in \left( 0,2\pi \right) . Note that inverse function is only possible when the function is bijective, hence we have to consider the domain and codomain of the function accordingly.