Solveeit Logo

Question

Question: Find the value of \({{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin...

Find the value of tan1(1)+cos1(12)+sin1(12){{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right).

Explanation

Solution

Hint:As we know that the values of tan(π4)=1,cos(π3)=12\tan \left( \dfrac{\pi }{4} \right)=1,\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2} and sin(π6)=12\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}. So, we will use these values in order to solve the question. In this question we have also applied the formulas given as tan(x)=tan(y)\tan \left( x \right)=\tan \left( y \right) which results into x=nπ+yx=n\pi +y and cos(x)=cos(y)\cos \left( x \right)=\cos \left( y \right) which results into x=2nπ±yx=2n\pi \pm y and sin(x)=sin(y)\sin \left( x \right)=\sin \left( y \right) which results into x=nπ+(1)nyx=n\pi +{{\left( -1 \right)}^{n}}y. Here n is the number that belongs to integers.

Complete step-by-step answer:
Now we will consider the expression tan1(1)+cos1(12)+sin1(12)...(i){{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)...(i).
We will solve it by taking one term at a time. So, first we take tan1(1){{\tan }^{-1}}\left( 1 \right) and we will substitute tan1(1){{\tan }^{-1}}\left( 1 \right) equal to x. This can be written as tan1(1)=x{{\tan }^{-1}}\left( 1 \right)=x.
Now, we will take the inverse tangent expression to the right side of the equal sign. This results in tanx=1\tan x=1.
Now, at this step we will use the value of tan(π4)=1\tan \left( \dfrac{\pi }{4} \right)=1 and substitute it into tanx=tan(π4)\tan x=\tan \left( \dfrac{\pi }{4} \right). Therefore, we have tanx=tan(π4)\tan x=\tan \left( \dfrac{\pi }{4} \right).
The tangent trigonometric operation is positive in first and third quadrants only. Thus, in the first quadrant the equation becomes tanx=tan(π4)\tan x=\tan \left( \dfrac{\pi }{4} \right). By using the formula given by tan(x)=tan(y)\tan \left( x \right)=\tan \left( y \right) which results in x=nπ+yx=n\pi +y. Thus, we get x=(π4)x=\left( \dfrac{\pi }{4} \right). As we know that the range of inverse tangents which is (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right). So, clearly x=(π4)x=\left( \dfrac{\pi }{4} \right) belongs to this open interval.
So, x=(π4)x=\left( \dfrac{\pi }{4} \right) is considered here. As tan1(1)=x{{\tan }^{-1}}\left( 1 \right)=x thus, we have tan1(1)=(π4){{\tan }^{-1}}\left( 1 \right)=\left( \dfrac{\pi }{4} \right).
Now we will consider cos1(12){{\cos }^{-1}}\left( -\dfrac{1}{2} \right). Now, we will put this value equal to y. Therefore, we will have cos1(12)=y{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=y.
Now, we will place the inverse cosine term to the right side of the expression. Thus, we get cosy=12\cos y=-\dfrac{1}{2}.
As we know that the value of cos(π3)=12\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}. Thus, we get cosy=cos(π3)\cos y=-\cos \left( \dfrac{\pi }{3} \right).
As cosine is negative only in the second and third quadrants so we will take it negative in the second quadrant. Since, the range of the inverse cosine is [0,π]\left[ 0,\pi \right].
Thus, we get cos(y)=cos(ππ3)\cos \left( y \right)=\cos \left( \pi -\dfrac{\pi }{3} \right) in the second quadrant. This results into cos(y)=cos(3ππ3)\cos \left( y \right)=\cos \left( \dfrac{3\pi -\pi }{3} \right) or, cos(y)=cos(2π3)\cos \left( y \right)=\cos \left( \dfrac{2\pi }{3} \right).
Now, we will use the cos(y)=cos(θ)\cos \left( y \right)=\cos \left( \theta \right) which results into y=2nπ±θy=2n\pi \pm \theta . Therefore, we have cos(y)=cos(2π3)\cos \left( y \right)=\cos \left( \dfrac{2\pi }{3} \right) results into y=2nπ±2π3y=2n\pi \pm \dfrac{2\pi }{3} or y=2π3y=\dfrac{2\pi }{3}. Since, cos1(12)=y{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=y thus we have cos1(12)=2π3{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{2\pi }{3}.
Hence, the required principal value of cos1(12)=2π3{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{2\pi }{3}.
Now, we will focus on the term sin1(12){{\sin }^{-1}}\left( -\dfrac{1}{2} \right). Now, we will substitute sin1(12)=z{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=z. By taking inverse sine to the right side of the equation we have 12=sinz-\dfrac{1}{2}=\sin z.
In trigonometry we are given the value of sin(π6)=12\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2} therefore, after substituting it in the term 12=sinx-\dfrac{1}{2}=\sin x we will get sinx=sin(π6)\sin x=-\sin \left( \dfrac{\pi }{6} \right).
Now, the trigonometric term sine is negative in the third and fourth quadrant. So, we will consider it in the fourth quadrant. This is for the reason here as the range of inverse sine is [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] and π6\dfrac{\pi }{6} belongs to [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] closed interval.
So, we will apply the formula of sin(x)=sin(y)\sin \left( x \right)=\sin \left( y \right) which results into x=nπ+(1)nyx=n\pi +{{\left( -1 \right)}^{n}}y we get sinx=sin(π6)\sin x=\sin \left( -\dfrac{\pi }{6} \right) or, x=nπ+(1)n(π6)x=n\pi +{{\left( -1 \right)}^{n}}\left( -\dfrac{\pi }{6} \right) or, x=π6x=-\dfrac{\pi }{6}. Since, sin1(12)=x{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=x therefore sin1(12)=π6{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=-\dfrac{\pi }{6}.
Now, we will substitute these values in expression (i). Therefore, we have
tan1(1)+cos1(12)+sin1(12)=(π4)+2π3π6{{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=\left( \dfrac{\pi }{4} \right)+\dfrac{2\pi }{3}-\dfrac{\pi }{6}
As the l.c.m. of 4, 3 and 6 is 12. Thus, we now have
tan1(1)+cos1(12)+sin1(12)=π4+2π3π6 tan1(1)+cos1(12)+sin1(12)=3π+8π2π12 tan1(1)+cos1(12)+sin1(12)=11π2π12 tan1(1)+cos1(12)+sin1(12)=9π12 tan1(1)+cos1(12)+sin1(12)=3π4 \begin{aligned} & {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{\pi }{4}+\dfrac{2\pi }{3}-\dfrac{\pi }{6} \\\ & \Rightarrow {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{3\pi +8\pi -2\pi }{12} \\\ & \Rightarrow {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{11\pi -2\pi }{12} \\\ & \Rightarrow {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{9\pi }{12} \\\ & \Rightarrow {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{3\pi }{4} \\\ \end{aligned}
Hence, the value of the expression tan1(1)+cos1(12)+sin1(12)=3π4{{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{3\pi }{4}.

Note: In the inverse tangent term we have not selected the angle in the third quadrant as the equation tanx=tan(π4)\tan x=\tan \left( \dfrac{\pi }{4} \right) changes into tanx=tan(π+π4)\tan x=\tan \left( \pi +\dfrac{\pi }{4} \right) or,
tanx=tan(4π+π4) tanx=tan(5π4) \begin{aligned} & \tan x=\tan \left( \dfrac{4\pi +\pi }{4} \right) \\\ & \Rightarrow \tan x=\tan \left( \dfrac{5\pi }{4} \right) \\\ \end{aligned}
By using the formula given by tan(x)=tan(y)\tan \left( x \right)=\tan \left( y \right) which results in x=nπ+yx=n\pi +y. Thus, we get x=(5π4)x=\left( \dfrac{5\pi }{4} \right). As the range of inverse tangent which is (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) therefore, x=(5π4)x=\left( \dfrac{5\pi }{4} \right) does not belong to this interval.
As we know that the trigonometric term sine is negative in the third and fourth quadrant. So, we will consider it in the fourth quadrant. This is because if we take the third quadrant we get sinx=sin(π+π6) sinx=sin(7π6) \begin{aligned} & \sin x=\sin \left( \pi +\dfrac{\pi }{6} \right) \\\ & \Rightarrow \sin x=\sin \left( \dfrac{7\pi }{6} \right) \\\ \end{aligned}
After applying the formula of sin(x)=sin(y)\sin \left( x \right)=\sin \left( y \right) which results into x=nπ+(1)nyx=n\pi +{{\left( -1 \right)}^{n}}y we get sinx=sin(7π6)\sin x=\sin \left( \dfrac{7\pi }{6} \right) or, x=nπ+(1)n(7π6)x=n\pi +{{\left( -1 \right)}^{n}}\left( \dfrac{7\pi }{6} \right) or, x=7π6x=\dfrac{7\pi }{6}. Since, sin1(12)=x{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=x therefore sin1(12)=7π6{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{7\pi }{6} and x=7π6x=\dfrac{7\pi }{6} does not belongs to the closed interval [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] which is the range of inverse sine function. And in case of inverse cosine function we could have also used the fourth quadrant also instead of the second quadrant. This is because cosine is negative in both these quadrants. But since the range of inverse cosine is [0,π]\left[ 0,\pi \right] so, we will also take the value which belongs to this interval. As 2π3\dfrac{2\pi }{3} belongs to the interval of inverse cosine therefore, we have selected this value. One should be aware that we are talking about the range of inverse cosine instead of cosine.