Solveeit Logo

Question

Question: Find the value of \( { \tan ^{ - 1}}( \dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}}) \) ....

Find the value of tan1(2tanx1tan2x){ \tan ^{ - 1}}( \dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}}) .

Explanation

Solution

Hint : Simplify the expression 2tanx1tan2x\dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}} such that it becomes equal to tan2x\tan 2x.
Use the identities: tanx=sinxcosx\tan x = \dfrac{{ \sin x}}{{ \cos x}} , sin2θ = 2sinθcosθ\sin 2 \theta { \text{ }} = { \text{ }}2 \sin \theta \cos \theta , and cos2θ=cos2θsin2θ\cos 2 \theta = { \cos ^2} \theta - { \text{si}}{{ \text{n}}^2} \theta for the simplification.
Finally, use this fact: tan1(tanx)=x{ \tan ^{ - 1}}( \tan x) = x for π2<x<π2\dfrac{{ - \pi }}{2} < x < \dfrac{ \pi }{2}to arrive at the answer.

Complete step-by-step answer :
We are given a trigonometric expression tan1(2tanx1tan2x)....(1){ \tan ^{ - 1}}( \dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}})....(1) whose value needs to be computed.
We will first simplify the expression inside the bracket.
So, consider the expression 2tanx1tan2x\dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}}
First, we will use the reciprocal identity: tanx=sinxcosx\tan x = \dfrac{{ \sin x}}{{ \cos x}}
Substituting this value of tan x{ \text{tan }}x , we get:
2tanx1tan2x  =2(sinxcosx)1(sinxcosx)2   \Rightarrow \dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}} \ \ = \dfrac{{2( \dfrac{{ \sin x}}{{ \cos x}})}}{{1 - {{( \dfrac{{ \sin x}}{{ \cos x}})}^2}}} \ \
We know that (sinxcosx)2=sin2xcos2x{( \dfrac{{ \sin x}}{{ \cos x}})^2} = \dfrac{{{{ \sin }^2}x}}{{{{ \cos }^2}x}} .
Thus, we have
2tanx1tan2x  =2sinxcosx1sin2xcos2x   \Rightarrow \dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}} \ \ = \dfrac{{ \dfrac{{2 \sin x}}{{ \cos x}}}}{{1 - \dfrac{{{{ \sin }^2}x}}{{{{ \cos }^2}x}}}} \ \
On further simplification of the denominator of this new fraction, we get:

2tanx1tan2x  =2sinxcosxcos2xsin2xcos2x  \Rightarrow \dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}} \ \ = \dfrac{{ \dfrac{{2 \sin x}}{{ \cos x}}}}{{ \dfrac{{{{ \cos }^2}x - {{ \sin }^2}x}}{{{{ \cos }^2}x}}}} \ \

We can eliminate one cos x{ \text{cos }}x each from the fractions in the numerator and the denominator.
This will leave us with 2sinx2 \sin x in the numerator and a fraction in the denominator.

2tanx1tan2x  =2sinxcos2xsin2xcosx  \Rightarrow \dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}} \ \ = \dfrac{{2 \sin x}}{{ \dfrac{{{{ \cos }^2}x - {{ \sin }^2}x}}{{ \cos x}}}} \ \

We can rewrite the RHS of this equation as follows:

2tanx1tan2x  =2sinxcos2xsin2xcosx  =2sinx1cosx(cos2xsin2x)  \Rightarrow \dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}} \ \ = \dfrac{{2 \sin x}}{{ \dfrac{{{{ \cos }^2}x - {{ \sin }^2}x}}{{ \cos x}}}} \ \ = \dfrac{{2 \sin x}}{{ \dfrac{1}{{ \cos x}}({{ \cos }^2}x - {{ \sin }^2}x)}} \ \

Now, multiply cos x{ \text{cos }} x in the numerator and the denominator.

2tanx1tan2x  =2sinxcosxcosxcosx(cos2xsin2x)  =2sinxcosxcos2xsin2x  \Rightarrow \dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}} \ \ = \dfrac{{2 \sin x \cos x}}{{ \dfrac{{ \cos x}}{{ \cos x}}({{ \cos }^2}x - {{ \sin }^2}x)}} \ \ = \dfrac{{2 \sin x \cos x}}{{{{ \cos }^2}x - {{ \sin }^2}x}} \ \

Here, we will use one of the double angle identities in the numerator: For any θ\theta , sin 2θ=2sinθcosθ{ \text{sin }}2 \theta = 2 \sin \theta \cos \theta .
Then the expression becomes
2tanx1tan2x=sin2xcos2xsin2x\dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}} = \dfrac{{ \sin 2x}}{{{{ \cos }^2}x - {{ \sin }^2}x}}
Now, let’s use another double angle identity but this time in the denominator.
For any θ\theta , cos 2θ=cos2θsin2θ{ \text{cos }}2 \theta = { \cos ^2} \theta - { \sin ^2} \theta
This simplifies the right hand side of our equation even more.
We get
2tanx1tan2x=sin2xcos2x\Rightarrow \dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}} = \dfrac{{ \sin 2x}}{{ \cos 2x}}
We will use the reciprocal identity again: tanx=sinxcosx\tan x = \dfrac{{ \sin x}}{{ \cos x}}
2tanx1tan2x=tan2x\Rightarrow \dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}} = \tan 2x
Going back to the original question (1) and substituting this value, we get
tan1(2tanx1tan2x)=tan1(tan2x)\Rightarrow { \tan ^{ - 1}}( \dfrac{{2 \tan x}}{{1 - {{ \tan }^2}x}}) = { \tan ^{ - 1}}( \tan 2x)
We know that tanθ\tan \theta is not defined at π2- \dfrac{ \pi }{2} and π2\dfrac{ \pi }{2} .
Also, tanθ\tan \theta is a periodic function with the period π\pi .
Therefore, tan1(tanθ)=θ{ \tan ^{ - 1}}( \tan \theta ) = \theta for π2<θ<π2- \dfrac{ \pi }{2} < \theta < \dfrac{ \pi }{2}
So, tan2x\tan 2x also has a period of π\pi .
tan1(tan2x)=2x\Rightarrow { \tan ^{ - 1}}( \tan 2x) = 2x for π2<2x<π2- \dfrac{ \pi }{2} < 2x < \dfrac{ \pi }{2} or π4<x<π4- \dfrac{ \pi }{4} < x < \dfrac{ \pi }{4}(This is obtained by throughout dividing π2<2x<π2- \dfrac{ \pi }{2} < 2x < \dfrac{ \pi }{2} by 2)
Hence the required answer is 2x2x .

Note : A common mistake that we can often notice among students is that they substitute cos2xsin2x=1{ \cos ^2}x - { \sin ^2}x = 1 . The confusion is mostly because of the similarity it holds with the Pythagorean identity cos2x+sin2x=1{ \cos ^2}x + { \sin ^2}x = 1 . However, such a mistake must be avoided at all costs.