Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Find the value of tan1[2cos(2sin112)]\tan ^{-1}\bigg[2\cos\Big(2\sin^{-1}\frac{1}{2}\Big)\bigg]

Answer

tan1[2cos(2sin112)]\tan ^{-1}\bigg[2\cos\Big(2\sin^{-1}\frac{1}{2}\Big)\bigg]
Let sin112=x.\sin^{-1}\frac{1}{2}=x.

Then, sinx=12=sin(π6)\sin x=\frac{1}{2}=\sin(\frac{\pi}{6})

sin112=π6\therefore\sin^{-1}\frac{1}{2}=\frac{\pi}{6}

tan1[2cos(2sin112)]=tan1[2cos(2xπ6)]\tan ^{-1}\bigg[2\cos\Big(2\sin^{-1}\frac{1}{2}\Big)\bigg]=\tan^{-1}\bigg[2\cos\Big(\frac{2x\pi}{6}\Big)\bigg]

=tan1[2cosπ3]=tan1[212]\tan^{-1}\bigg[2\cos\frac{\pi}{3}\bigg]=\tan^{-1}\bigg[2*\frac{1}{2}\bigg]

=tan11=π4\tan^{-1}1=\frac{\pi}{4}