Question
Mathematics Question on Inverse Trigonometric Functions
Find the value of tan−1[2cos(2sin−121)]
Answer
tan−1[2cos(2sin−121)]
Let sin−121=x.
Then, sinx=21=sin(6π)
∴sin−121=6π
tan−1[2cos(2sin−121)]=tan−1[2cos(62xπ)]
=tan−1[2cos3π]=tan−1[2∗21]
=tan−11=4π