Question
Mathematics Question on Inverse Trigonometric Functions
Find the value of tan-1(1)+cos-1(−21)+sin-1(−21)
Answer
Let tan-1(1)=x.
Then, tanx=1=tan(4π).
tan-1(1)=4π
Let cos-1(−21)=y,
Then cosy=−21=cos(3π)=cos(π−3π)=cos(32π).
so cos-1(−21)=32π.
Let sin-1(−21)=z,,
Then sin z=−21=−sin(6π)=sin(−6π).
so sin-1(−21)=−6π
Therefore tan-1(1)+cos-1(−21)+sin-1(−21)=4π+32π−6π=123π+8π−2π=43π.