Solveeit Logo

Question

Question: Find the value of \[\tan {1^0}\tan {2^0}\tan {3^0}.......\tan {89^0}\]....

Find the value of tan10tan20tan30.......tan890\tan {1^0}\tan {2^0}\tan {3^0}.......\tan {89^0}.

Explanation

Solution

In the question, we need to determine the value of the function of the series of the tangent which will be not possible but substituting their individual values. So, we need to carry out the process by using some trigonometric identities such as tanθ=1cotθ\tan \theta = \dfrac{1}{{\cot \theta }} and tan(90θ)=cotθ\tan (90 - \theta ) = \cot \theta .Using the above two formulae, the above question can be solved.

Complete step-by-step solution
Consider the value of the given function to be F such that, F=tan10tan20tan30........tan870tan880tan890F = \tan {1^0}\tan {2^0}\tan {3^0}........\tan {87^0}\tan {88^0}\tan {89^0}
As, tan(90θ)=cotθ\tan (90 - \theta ) = \cot \theta
Now, the values of the angle of the tangent after 45{45^ \circ }can be written in the form of 90{90^ \circ } as:

tan46=tan(9044)=cot44 tan47=tan(9043)=cot43 tan48=tan(9042)=cot42 ... ... tan87=tan(903)=cot3 tan88=tan(902)=cot2 tan89=tan(901)=cot1  \Rightarrow \tan 46 = \tan \left( {90 - 44} \right) = \cot 44 \\\ \Rightarrow \tan 47 = \tan \left( {90 - 43} \right) = \cot 43 \\\ \Rightarrow \tan 48 = \tan \left( {90 - 42} \right) = \cot 42 \\\ ... \\\ ... \\\ \Rightarrow \tan 87 = \tan \left( {90 - 3} \right) = \cot 3 \\\ \Rightarrow\tan 88 = \tan \left( {90 - 2} \right) = \cot 2 \\\ \Rightarrow \tan 89 = \tan \left( {90 - 1} \right) = \cot 1 \\\
Substituting the values in the function tan10tan20tan30.......tan870tan880tan890\tan {1^0}\tan {2^0}\tan {3^0}.......\tan {87^0}\tan {88^0}\tan {89^0}, we get:

F=tan10tan20tan30....tan450...tan870tan880tan890 =tan10tan20tan30....tan450....tan(903)0tan(902)0tan(901)0 =tan10tan20tan30....tan450....cot30cot20cot10 =tan10tan20tan30....tan450....1tan301tan201tan10  F = \tan {1^0}\tan {2^0}\tan {3^0}....\tan {45^0}...\tan {87^0}\tan {88^0}\tan {89^0} \\\ = \tan {1^0}\tan {2^0}\tan {3^0}....\tan {45^0}....\tan {(90 - 3)^0}\tan {(90 - 2)^0}\tan {(90 - 1)^0} \\\ = \tan {1^0}\tan {2^0}\tan {3^0}....\tan {45^0}....\cot {3^0}\cot {2^0}\cot {1^0} \\\ = \tan {1^0}\tan {2^0}\tan {3^0}....\tan {45^0}....\dfrac{1}{{\tan {3^0}}}\dfrac{1}{{\tan {2^0}}}\dfrac{1}{{\tan {1^0}}} \\\

We can cancel the terms in such a way that every value of tan\tan up to 440{44^0} will be canceled by cot440\cot {44^0}and only tan450\tan {45^0} is left.

F=tan10tan20tan30....tan450....1tan301tan201tan10 =tan450  F = \tan {1^0}\tan {2^0}\tan {3^0}....\tan {45^0}....\dfrac{1}{{\tan {3^0}}}\dfrac{1}{{\tan {2^0}}}\dfrac{1}{{\tan {1^0}}} \\\ = \tan {45^0} \\\

Also, tan45=1\tan {45^ \circ } = 1
Hence, F=tan450=1F = \tan {45^0} = 1

Hence, tan10tan20tan30.......tan890\tan {1^0}\tan {2^0}\tan {3^0}.......\tan {89^0} will be equal to 1.

Note: Students should not get confused with the terms degree and radians. These two terms are completely different. To change degrees to radians, the equivalent relationship 1=π/1801^\circ = \pi /180radians is used, and the given number of degrees is multiplied by π/180 to convert to radian measure. Similarly, the equation 1=π/1801^\circ = \pi /180 is used to change radians to degrees by multiplying the given radian measure 180/π180/\pi to obtain the degree measure.