Solveeit Logo

Question

Question: Find the value of \(\sinh \left( \log \left( 2+\sqrt{5} \right) \right)\), here logarithm is to the ...

Find the value of sinh(log(2+5))\sinh \left( \log \left( 2+\sqrt{5} \right) \right), here logarithm is to the natural base e.
(a) 2
(b) 3
(c) 252-\sqrt{5}
(d) 2+52+\sqrt{5}

Explanation

Solution

We start solving the problem by recalling the definition of sine hyperbolic function as sinh(y)=eyey2\sinh \left( y \right)=\dfrac{{{e}^{y}}-{{e}^{-y}}}{2}. We then substitute log(2+5)\log \left( 2+\sqrt{5} \right) in place of ‘y’ and then make use of the results loga=log1a-\log a=\log \dfrac{1}{a} and eloga=a{{e}^{\log a}}=a to proceed through the problems. We then make use of the result (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab and then perform the necessary calculations to get the required result.

Complete step-by-step answer:
According to the problem, we are asked to find the value of sinh(log(2+5))\sinh \left( \log \left( 2+\sqrt{5} \right) \right), where logarithm is to the natural base e.
We know that the sine hyperbolic function is defined as sinh(y)=eyey2\sinh \left( y \right)=\dfrac{{{e}^{y}}-{{e}^{-y}}}{2}. Let us use this definition to find the value of the given sinh(log(2+5))\sinh \left( \log \left( 2+\sqrt{5} \right) \right).
So, we have sinh(log(2+5))=elog(2+5)elog(2+5)2\sinh \left( \log \left( 2+\sqrt{5} \right) \right)=\dfrac{{{e}^{\log \left( 2+\sqrt{5} \right)}}-{{e}^{-\log \left( 2+\sqrt{5} \right)}}}{2} ---(1).
We know that loga=log1a-\log a=\log \dfrac{1}{a}. Let us use this result in equation (1).
sinh(log(2+5))=elog(2+5)elog(12+5)2\Rightarrow \sinh \left( \log \left( 2+\sqrt{5} \right) \right)=\dfrac{{{e}^{\log \left( 2+\sqrt{5} \right)}}-{{e}^{\log \left( \dfrac{1}{2+\sqrt{5}} \right)}}}{2} ---(2).
We know that eloga=a{{e}^{\log a}}=a. Let us use this result in equation (2).
sinh(log(2+5))=2+5(12+5)2\Rightarrow \sinh \left( \log \left( 2+\sqrt{5} \right) \right)=\dfrac{2+\sqrt{5}-\left( \dfrac{1}{2+\sqrt{5}} \right)}{2}.
sinh(log(2+5))=((2+5)212+5)2\Rightarrow \sinh \left( \log \left( 2+\sqrt{5} \right) \right)=\dfrac{\left( \dfrac{{{\left( 2+\sqrt{5} \right)}^{2}}-1}{2+\sqrt{5}} \right)}{2} ---(3).
We know that (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. Let us use this result in equation (3).
sinh(log(2+5))=(22+(5)2+2(2)(5)12+5)2\Rightarrow \sinh \left( \log \left( 2+\sqrt{5} \right) \right)=\dfrac{\left( \dfrac{{{2}^{2}}+{{\left( \sqrt{5} \right)}^{2}}+2\left( 2 \right)\left( \sqrt{5} \right)-1}{2+\sqrt{5}} \right)}{2}.
sinh(log(2+5))=(4+5+45)12(2+5)\Rightarrow \sinh \left( \log \left( 2+\sqrt{5} \right) \right)=\dfrac{\left( 4+5+4\sqrt{5} \right)-1}{2\left( 2+\sqrt{5} \right)}.
sinh(log(2+5))=8+454+25\Rightarrow \sinh \left( \log \left( 2+\sqrt{5} \right) \right)=\dfrac{8+4\sqrt{5}}{4+2\sqrt{5}}.
sinh(log(2+5))=2\Rightarrow \sinh \left( \log \left( 2+\sqrt{5} \right) \right)=2.
So, we have found the value of sinh(log(2+5))\sinh \left( \log \left( 2+\sqrt{5} \right) \right) as 2.
∴ The correct option for the given problem is (a).

So, the correct answer is “Option (a)”.

Note: If the given logarithm is not to the natural base, then the result will not be the same as we get in this problem. We should always take logarithms to the natural base if nothing is mentioned in the problem about the base while solving problems related to hyperbolic functions. We can also solve this problem as shown below:
Let us assume sinh(log(2+5))=x\sinh \left( \log \left( 2+\sqrt{5} \right) \right)=x.
log(2+5)=sinh1(x)\Rightarrow \log \left( 2+\sqrt{5} \right)={{\sinh }^{-1}}\left( x \right).
We know that sinh1(x)=log(x+x2+1){{\sinh }^{-1}}\left( x \right)=\log \left( x+\sqrt{{{x}^{2}}+1} \right).
log(2+5)=log(x+x2+1)\Rightarrow \log \left( 2+\sqrt{5} \right)=\log \left( x+\sqrt{{{x}^{2}}+1} \right).
2+5=x+x2+1\Rightarrow 2+\sqrt{5}=x+\sqrt{{{x}^{2}}+1}.
Comparing rational and irrational parts on both sides we get,
x=2\Rightarrow x=2.