Solveeit Logo

Question

Question: Find the value of \[{\sinh ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \] ( 1) \[{\tanh ^{ - 1}}\sqrt ...

Find the value of sinh1(12)={\sinh ^{ - 1}}\left( {\dfrac{1}{2}} \right) =
( 1) tanh15{\tanh ^{ - 1}}\sqrt 5
( 2) tanh1(15){\tanh ^{ - 1}}\left( {\dfrac{1}{{\sqrt 5 }}} \right)
( 3) tanh13{\tanh ^{ - 1}}\sqrt 3
( 4) tanh1(25){\tanh ^{ - 1}}\left( {\dfrac{2}{{\sqrt 5 }}} \right)

Explanation

Solution

First we have to keep in mind that it is inverse sin\sin hyperbolic or sinh1{\sinh ^{ - 1}} function ; not inverse sin\sin function . Then we should obtain the value of sinh1(12){\sinh ^{ - 1}}\left( {\dfrac{1}{2}} \right) using formula . After finding that value we have to equate that with the value of tanh1x{\tanh ^{ - 1}}x . We have to use the formula of tanh1x{\tanh ^{ - 1}}x and find the value of xx. For simplification and calculation we have to use some basic logarithmic and fraction formulas .
FORMULA USED
sinh1x=ln(x+x2+1){\sinh ^{ - 1}}x = \ln \left( {x + \sqrt {{x^2} + 1} } \right)
tanh1x=12ln(1+x1x){\tanh ^{ - 1}}x = \dfrac{1}{2}\ln \left( {\dfrac{{1 + x}}{{1 - x}}} \right)

Complete answer: First we have to evaluate the value of sinh1(12){\sinh ^{ - 1}}\left( {\dfrac{1}{2}} \right) by formula .
Putting the value of xxequal to 12\dfrac{1}{2}we get
sinh112=ln(12+(12)2+1){\sinh ^{ - 1}}\dfrac{1}{2} = \ln \left( {\dfrac{1}{2} + \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + 1} } \right)
=ln(12+(14)+1)= \ln \left( {\dfrac{1}{2} + \sqrt {\left( {\dfrac{1}{4}} \right) + 1} } \right)
=ln(12+54)= \ln \left( {\dfrac{1}{2} + \sqrt {\dfrac{5}{4}} } \right)
So we get sinh1(12){\sinh ^{ - 1}}\left( {\dfrac{1}{2}} \right) =ln(12+54) = \ln \left( {\dfrac{1}{2} + \sqrt {\dfrac{5}{4}} } \right)
Now we have to equate it with the value of tanh1x{\tanh ^{ - 1}}xand after that with the help of a formula we will get the value of xx.
12ln(1+x1x)=ln(12+54)\dfrac{1}{2}\ln \left( {\dfrac{{1 + x}}{{1 - x}}} \right) = \ln \left( {\dfrac{1}{2} + \sqrt {\dfrac{5}{4}} } \right)
Now for the simplicity of calculation we will use some logarithmic formula and we can get
12ln(1+x1x)=ln(1+x1x)12\dfrac{1}{2}\ln \left( {\dfrac{{1 + x}}{{1 - x}}} \right) = \ln {\left( {\dfrac{{1 + x}}{{1 - x}}} \right)^{\dfrac{1}{2}}}
Then putting these value in previous equation we get
ln(1+x1x)12=ln(12+54)\ln {\left( {\dfrac{{1 + x}}{{1 - x}}} \right)^{\dfrac{1}{2}}} = \ln \left( {\dfrac{1}{2} + \sqrt {\dfrac{5}{4}} } \right)
(1+x1x)12=(12+54)\Rightarrow {\left( {\dfrac{{1 + x}}{{1 - x}}} \right)^{\dfrac{1}{2}}} = \left( {\dfrac{1}{2} + \sqrt {\dfrac{5}{4}} } \right)
Taking square on both side we get
(1+x1x)=(12+54)2\Rightarrow \left( {\dfrac{{1 + x}}{{1 - x}}} \right) = {\left( {\dfrac{1}{2} + \sqrt {\dfrac{5}{4}} } \right)^2}
(1+x1x)=((12)2+54+2×12×52)\Rightarrow \left( {\dfrac{{1 + x}}{{1 - x}}} \right) = \left( {{{\left( {\dfrac{1}{2}} \right)}^2} + \dfrac{5}{4} + 2 \times \dfrac{1}{2} \times \dfrac{{\sqrt 5 }}{2}} \right)
After simplifying we get
(1+x1x)=(32+52)\Rightarrow \left( {\dfrac{{1 + x}}{{1 - x}}} \right) = \left( {\dfrac{3}{2} + \dfrac{{\sqrt 5 }}{2}} \right)
(1+x1x)=(3+52)\Rightarrow \left( {\dfrac{{1 + x}}{{1 - x}}} \right) = \left( {\dfrac{{3 + \sqrt 5 }}{2}} \right)
After cross multiplication we get
2×(1+x)=(3+5)×(1x)\Rightarrow 2 \times \left( {1 + x} \right) = \left( {3 + \sqrt 5 } \right) \times \left( {1 - x} \right)
2+2x=33x+55x\Rightarrow 2 + 2x = 3 - 3x + \sqrt 5 - \sqrt 5 x
After simplification and taking all xx containing term in one side we get
5x+5x=1+5\Rightarrow 5x + \sqrt 5 x = 1 + \sqrt 5
x×(5+5)=(1+5)\Rightarrow x \times \left( {5 + \sqrt 5 } \right) = \left( {1 + \sqrt 5 } \right)
After simplifying we get
x=1+55+5\Rightarrow x = \dfrac{{1 + \sqrt 5 }}{{5 + \sqrt 5 }}
To rationalise we multiply both numerator and denominator with the conjugate of denominator which is (55)\left( {5 - \sqrt 5 } \right)
x=(1+5)(55)(5+5)(55)\Rightarrow x = \dfrac{{\left( {1 + \sqrt 5 } \right)\left( {5 - \sqrt 5 } \right)}}{{\left( {5 + \sqrt 5 } \right)\left( {5 - \sqrt 5 } \right)}}
After multiplication we get
x=55+555255\Rightarrow x = \dfrac{{5 - \sqrt 5 + 5\sqrt 5 - 5}}{{25 - 5}}
After simplification we get
x=4520\Rightarrow x = \dfrac{{4\sqrt 5 }}{{20}}
x=15\Rightarrow x = \dfrac{1}{{\sqrt 5 }}
So we get the final answer sinh1(12){\sinh ^{ - 1}}\left( {\dfrac{1}{2}} \right)=tanh1(15){\tanh ^{ - 1}}\left( {\dfrac{1}{{\sqrt 5 }}} \right)
So option 2 is the correct answer .

Note:
Remember we are dealing with hyperbolic function not simple trigonometric function .
We have to keep in mind basic logarithmic and fraction formulas and students can simplify the equation in a way s/he can find easiest . For cross check the answer student can put the value x=15x = \dfrac{1}{{\sqrt 5 }}in inverse hyperbolic formula given by tanh1x=12ln(1+x1x){\tanh ^{ - 1}}x = \dfrac{1}{2}\ln \left( {\dfrac{{1 + x}}{{1 - x}}} \right).Alternative but tedious method is to check the value of all four option and see which one is equal to sinh1(12){\sinh ^{ - 1}}\left( {\dfrac{1}{2}} \right).