Solveeit Logo

Question

Question: Find the value of \(\sin \left( 2{{\sin }^{-1}}\dfrac{3}{5} \right)\) ....

Find the value of sin(2sin135)\sin \left( 2{{\sin }^{-1}}\dfrac{3}{5} \right) .

Explanation

Solution

In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
sinθ=PH,cosθ=BH,tanθ=PB\sin \theta =\dfrac{P}{H},\cos \theta =\dfrac{B}{H},\tan \theta =\dfrac{P}{B}
P2+B2=H2{{P}^{2}}+{{B}^{2}}={{H}^{2}} (Pythagoras Theorem)
sin 2θ = 2 sin θ cos θ.
If sin θ = x, then we say sin1x=θ{{\sin }^{-1}}x=\theta .
sin(sin1x)=x\sin ({{\sin }^{-1}}x)=x .

Complete step-by-step answer:
Let's say that sin135=θ{{\sin }^{-1}}\dfrac{3}{5}=\theta .
∴ By the definition of inverse trigonometric functions, sinθ=35\sin \theta =\dfrac{3}{5} .
And, by the definition of trigonometric ratios, sinθ=PH\sin \theta =\dfrac{P}{H} and cosθ=BH\cos \theta =\dfrac{B}{H} .
∴ P = 3x and H = 5x.
It can be represented using a right-angled triangle as follows:

Using the Pythagoras' Theorem:
B=H2P2=(5x)2(3x)2=25x29x2=16x2=4xB=\sqrt{{{H}^{2}}-{{P}^{2}}}=\sqrt{{{(5x)}^{2}}-{{(3x)}^{2}}}=\sqrt{25{{x}^{2}}-9{{x}^{2}}}=\sqrt{16{{x}^{2}}}=4x .
And thus, cosθ=BH=4x5x=45\cos \theta =\dfrac{B}{H}=\dfrac{4x}{5x}=\dfrac{4}{5} .
Now, using the identity sin 2θ = 2 sin θ cos θ, and substituting the values of sinθ=35\sin \theta =\dfrac{3}{5} and cosθ=45\cos \theta =\dfrac{4}{5} from above, we will get:
sin(2sin135)=2(35)(45)\sin \left( 2{{\sin }^{-1}}\dfrac{3}{5} \right)=2\left( \dfrac{3}{5} \right)\left( \dfrac{4}{5} \right)
On multiplying the terms on the Right-Hand Side of the equation together, we get:
sin(2sin135)=2425\sin \left( 2{{\sin }^{-1}}\dfrac{3}{5} \right)=\dfrac{24}{25} .
Hence, the value of sin(2sin135)\sin \left( 2{{\sin }^{-1}}\dfrac{3}{5} \right) is 2425\dfrac{24}{25}

Note: The inverse trigonometric functions, sin1,cos1,tan1{{\sin }^{-1}},{{\cos }^{-1}},{{\tan }^{-1}} ... etc. represent the value of an angle.
The inverse trigonometric functions, sin1,cos1,tan1{{\sin }^{-1}},{{\cos }^{-1}},{{\tan }^{-1}} ... etc. are also written as arcsin, arccos, arctan ... etc.
If one trigonometric ratio is known, we can use Pythagoras' Theorem and calculate the values of all other trigonometric ratios.
sin135=36.87{{\sin }^{-1}}\dfrac{3}{5}=36.87{}^\circ .