Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Find the value of sin5π12sinπ12sin \frac{5\pi}{12}\,sin \, \frac{\pi}{12}.

A

1/21/2

B

1/41/4

C

00

D

11

Answer

1/41/4

Explanation

Solution

We have, sin5π12sinπ12=12[2sin5π12sinπ12]sin \frac{5\pi}{12}\cdot sin \frac{\pi}{12}=\frac{1}{2}\left[2\,sin \frac{5\pi}{12}\cdot sin \frac{\pi}{12}\right] =12[cos(5π12π12)cos(5π12+π12)]=\frac{1}{2}\left[cos\left(\frac{5\pi}{12}-\frac{\pi}{12}\right)-cos\left(\frac{5\pi}{12}+\frac{\pi}{12}\right)\right] =12(cosπ3cosπ2)=12[120]=\frac{1}{2}\left(cos \frac{\pi}{3}-cos \frac{\pi}{2}\right)=\frac{1}{2}\left[\frac{1}{2}-0\right] =14=\frac{1}{4}