Solveeit Logo

Question

Question: Find the value of \(\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }...

Find the value of sin60cos30+sin30cos60\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}.

Explanation

Solution

Hint: Here, we have sin60cos30+sin30cos60\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }} which is of the form sinAcosB+cosAsinB\sin A\cos B+\cos A\sin B where A=60A={{60}^{\circ }} and B=30B={{30}^{\circ }}, which is the expansion of sin(A+B)\sin (A+B) where A+B=60+30A+B={{60}^{\circ }}+{{30}^{\circ }}, hence we will get sin(60+30)\sin ({{60}^{\circ }}+{{30}^{\circ }}) and also apply the formulas:
cos(90A)=sinA sin(90A)=cosA \begin{aligned} & \cos ({{90}^{\circ }}-A)=\sin A \\\ & \sin ({{90}^{\circ }}-A)=\cos A \\\ \end{aligned}

Complete step-by-step answer:
Here, we have to find the value of sin60cos30+sin30cos60\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}.
Now, we can rewrite the equation as:
sin60cos30+cos60sin30\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}
Hence, the above equation is of the form sinAcosB+cosAsinB\sin A\cos B+\cos A\sin B, which is the expansion of sin(A+B)\sin (A+B). i.e. we can write:
sin(A+B)=sinAcosB+cosAsinB\sin (A+B)=\sin A\cos B+\cos A\sin B
Since, we haveA=60A={{60}^{\circ }} and B=30B={{30}^{\circ }}. We can apply the above formula where:
sin(A+B)=sin(60+30)\sin (A+B)=\sin ({{60}^{\circ }}+{{30}^{\circ }})
i.e. we obtain the equation:
sin(60+30)=sin60cos30+cos30sin60 sin90=sin60cos30+cos30sin60 \begin{aligned} & \sin ({{60}^{\circ }}+{{30}^{\circ }})=\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{30}^{\circ }}\sin {{60}^{\circ }} \\\ & \sin {{90}^{\circ }}=\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{30}^{\circ }}\sin {{60}^{\circ }} \\\ \end{aligned}
We know that the value of sin90=1\sin {{90}^{\circ }}=1.
Therefore, we will get:
sin60cos30+cos30sin60=sin90=1\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{30}^{\circ }}\sin {{60}^{\circ }}=\sin {{90}^{\circ }}=1
Hence we can say that the value of,
sin60cos30+sin30cos60=1\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}=1
or
Here, there is another method to find the solution, i.e, by directly substituting the values for sin60=32 sin30=12 cos60=12 cos30=32 \begin{aligned} & \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\\ & \sin {{30}^{\circ }}=\dfrac{1}{2} \\\ & \cos {{60}^{\circ }}=\dfrac{1}{2} \\\ & \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\\ \end{aligned}
Hence by substituting all these values in sin60cos30+cos60sin30\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}we get:
sin60cos30+cos60sin30=32×32+12×12\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\times \dfrac{1}{2}
We know that 3×3=3\sqrt{3}\times \sqrt{3}=3. Hence, we get:
sin60cos30+cos60sin30=34+14\sin {{60}^{{}^\circ }}\cos {{30}^{{}^\circ }}+\cos {{60}^{{}^\circ }}\sin {{30}^{{}^\circ }}=\dfrac{3}{4}+\dfrac{1}{4}
Now, by taking the LCM we get:
sin60cos30+cos60sin30=3+14 sin60cos30+cos60sin30=44 sin60cos30+cos60sin30=1 \begin{aligned} & \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}=\dfrac{3+1}{4} \\\ & \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}=\dfrac{4}{4} \\\ & \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}=1 \\\ \end{aligned}
or
Here, we can also solve this by converting everything into sine. i.e.
We have the formulas:
cos(90A)=sinA sin(90A)=cosA \begin{aligned} & \cos ({{90}^{\circ }}-A)=\sin A \\\ & \sin ({{90}^{\circ }}-A)=\cos A \\\ \end{aligned}
That is, we can write:
cos30=sin(9030) cos30=sin60 ..... (1) \begin{aligned} & \cos {{30}^{\circ }}=\sin ({{90}^{\circ }}-{{30}^{\circ }}) \\\ & \cos {{30}^{\circ }}=\sin {{60}^{\circ }}\text{ }.....\text{ (1)} \\\ \end{aligned}
Similarly, we will get:
sin30=cos(9030) sin30=cos60 ..... (2) \begin{aligned} & \sin {{30}^{\circ }}=\cos ({{90}^{\circ }}-{{30}^{\circ }}) \\\ & \sin {{30}^{\circ }}=\cos {{60}^{\circ }}\text{ }.....\text{ (2)} \\\ \end{aligned}
By applying equation (1) and equation (2) in sin60cos30+sin30cos60\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}we get:
sin60cos30+sin30cos60=sin60sin60+cos60cos60 sin60cos30+sin30cos60=sin260+cos260 \begin{aligned} & \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}=\sin {{60}^{\circ }}\sin {{60}^{\circ }}+\cos {{60}^{\circ }}\cos {{60}^{\circ }} \\\ & \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}={{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}{{60}^{\circ }} \\\ \end{aligned}
We also know that cos2A+sin2A=1{{\cos }^{2}}A+{{\sin }^{2}}A=1.
Therefore, we can say that sin260+cos260=1{{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}{{60}^{\circ }}=1
Hence, we will get:
sin60cos30+sin30cos60=1\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}=1
Hence we got the value of sin60cos30+sin30cos60=1\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}=1 in three different ways.
We can apply any one of these methods to obtain the solution.

Note: Here, three different methods are given to find the value of sin60cos30+sin30cos60\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}. If we know the trigonometric values of sine and cosine angles, then it is the easiest method to solve the problem. But, if we have doubt regarding any values, then go for the other two alternate methods.