Question
Question: Find the value of \[\sin 315^\circ \cos 315^\circ + \sin 420^\circ \cos 330^\circ \]....
Find the value of sin315∘cos315∘+sin420∘cos330∘.
Solution
Here, we need to find the value of the given expression. We will convert the given angle measures into acute angles using trigonometric identities. Then, we will multiply and add the terms to find the required value. Trigonometric identities can only be used in an expression where trigonometric functions are present.
Complete step-by-step answer:
First, we will simplify the given trigonometric ratios.
We can rewrite the given angles as the sum or difference of a multiple of 90∘ or 180∘, and an acute angle.
Rewriting the terms of the expression, we get
sin315∘=sin(360∘−45∘)
cos315∘=cos(360∘−45∘)
sin420∘=sin(360∘+60∘)
cos330∘=cos(360∘−30∘)
The cosine of an angle 360∘−x, is equal to the cosine of angle x, where x is an acute angle.
Therefore, we get
cos315∘=cos(360∘−45∘)=cos45∘
cos330∘=cos(360∘−30∘)=cos30∘
The sine of an angle 360∘−x, is equal to the negative of the sine of angle x, where x is an acute angle.
Therefore, we get
sin315∘=sin(360∘−45∘)=−sin45∘
The sine of an angle 360∘+x, is equal to the sine of angle x, where x is an acute angle.
Therefore, we get
sin420∘=sin(360∘+60∘)=sin60∘
Substituting cos315∘=cos45∘, cos330∘=cos30∘, sin315∘=−sin45∘, and sin420∘=sin60∘ in the given expression sin315∘cos315∘+sin420∘cos330∘, we get
⇒sin315∘cos315∘+sin420∘cos330∘=−sin45∘cos45∘+sin60∘cos30∘
The sine of an angle measuring 45∘ is equal to 21.
The sine of an angle measuring 60∘ is equal to 23.
The cosine of an angle measuring 45∘ is equal to 21.
The cosine of an angle measuring 30∘ is equal to 23.
Substituting sin45∘=21, cos45∘=21, sin60∘=23, and cos30∘=23 in the equation, we get
⇒sin315∘cos315∘+sin420∘cos330∘=−21×21+23×23
Multiplying the terms of the expression, we get
⇒sin315∘cos315∘+sin420∘cos330∘=−21+43
The L.C.M. of 2 and 4 is 4.
Rewriting the terms with the denominator 4, we get
⇒sin315∘cos315∘+sin420∘cos330∘=−42+43
Adding the terms of the expression, we get
⇒sin315∘cos315∘+sin420∘cos330∘=4−2+3 ⇒sin315∘cos315∘+sin420∘cos330∘=41
Therefore, we get the value of the expression sin315∘cos315∘+sin420∘cos330∘ as 41.
Note: A common mistake is to convert cos330∘=cos(360∘−30∘) to sin30∘. This is incorrect because 360∘ is an even multiple of 90∘. If we rewrite cos330∘ as cos(270∘+60∘), then only it will become sin60∘, which is equal to 23. Here, cosine gets converted to sine because 270∘ is an odd multiple of 90∘.