Solveeit Logo

Question

Question: Find the value of \[\sin 315^\circ \cos 315^\circ + \sin 420^\circ \cos 330^\circ \]....

Find the value of sin315cos315+sin420cos330\sin 315^\circ \cos 315^\circ + \sin 420^\circ \cos 330^\circ .

Explanation

Solution

Here, we need to find the value of the given expression. We will convert the given angle measures into acute angles using trigonometric identities. Then, we will multiply and add the terms to find the required value. Trigonometric identities can only be used in an expression where trigonometric functions are present.

Complete step-by-step answer:
First, we will simplify the given trigonometric ratios.
We can rewrite the given angles as the sum or difference of a multiple of 9090^\circ or 180180^\circ , and an acute angle.
Rewriting the terms of the expression, we get
sin315=sin(36045)\sin 315^\circ = \sin \left( {360^\circ - 45^\circ } \right)
cos315=cos(36045)\cos 315^\circ = \cos \left( {360^\circ - 45^\circ } \right)
sin420=sin(360+60)\sin 420^\circ = \sin \left( {360^\circ + 60^\circ } \right)
cos330=cos(36030)\cos 330^\circ = \cos \left( {360^\circ - 30^\circ } \right)
The cosine of an angle 360x360^\circ - x, is equal to the cosine of angle xx, where xx is an acute angle.
Therefore, we get
cos315=cos(36045)=cos45\cos 315^\circ = \cos \left( {360^\circ - 45^\circ } \right) = \cos 45^\circ
cos330=cos(36030)=cos30\cos 330^\circ = \cos \left( {360^\circ - 30^\circ } \right) = \cos 30^\circ
The sine of an angle 360x360^\circ - x, is equal to the negative of the sine of angle xx, where xx is an acute angle.
Therefore, we get
sin315=sin(36045)=sin45\sin 315^\circ = \sin \left( {360^\circ - 45^\circ } \right) = - \sin 45^\circ
The sine of an angle 360+x360^\circ + x, is equal to the sine of angle xx, where xx is an acute angle.
Therefore, we get
sin420=sin(360+60)=sin60\sin 420^\circ = \sin \left( {360^\circ + 60^\circ } \right) = \sin 60^\circ
Substituting cos315=cos45\cos 315^\circ = \cos 45^\circ , cos330=cos30\cos 330^\circ = \cos 30^\circ , sin315=sin45\sin 315^\circ = - \sin 45^\circ , and sin420=sin60\sin 420^\circ = \sin 60^\circ in the given expression sin315cos315+sin420cos330\sin 315^\circ \cos 315^\circ + \sin 420^\circ \cos 330^\circ , we get
sin315cos315+sin420cos330=sin45cos45+sin60cos30\Rightarrow \sin 315^\circ \cos 315^\circ + \sin 420^\circ \cos 330^\circ = - \sin 45^\circ \cos 45^\circ + \sin 60^\circ \cos 30^\circ
The sine of an angle measuring 4545^\circ is equal to 12\dfrac{1}{{\sqrt 2 }}.
The sine of an angle measuring 6060^\circ is equal to 32\dfrac{{\sqrt 3 }}{2}.
The cosine of an angle measuring 4545^\circ is equal to 12\dfrac{1}{{\sqrt 2 }}.
The cosine of an angle measuring 3030^\circ is equal to 32\dfrac{{\sqrt 3 }}{2}.
Substituting sin45=12\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}, cos45=12\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}, sin60=32\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}, and cos30=32\cos 30^\circ = \dfrac{{\sqrt 3 }}{2} in the equation, we get
sin315cos315+sin420cos330=12×12+32×32\Rightarrow \sin 315^\circ \cos 315^\circ + \sin 420^\circ \cos 330^\circ = - \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{{\sqrt 2 }} + \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2}
Multiplying the terms of the expression, we get
sin315cos315+sin420cos330=12+34\Rightarrow \sin 315^\circ \cos 315^\circ + \sin 420^\circ \cos 330^\circ = - \dfrac{1}{2} + \dfrac{3}{4}
The L.C.M. of 2 and 4 is 4.
Rewriting the terms with the denominator 4, we get
sin315cos315+sin420cos330=24+34\Rightarrow \sin 315^\circ \cos 315^\circ + \sin 420^\circ \cos 330^\circ = - \dfrac{2}{4} + \dfrac{3}{4}
Adding the terms of the expression, we get
sin315cos315+sin420cos330=2+34 sin315cos315+sin420cos330=14\begin{array}{l} \Rightarrow \sin 315^\circ \cos 315^\circ + \sin 420^\circ \cos 330^\circ = \dfrac{{ - 2 + 3}}{4}\\\ \Rightarrow \sin 315^\circ \cos 315^\circ + \sin 420^\circ \cos 330^\circ = \dfrac{1}{4}\end{array}
Therefore, we get the value of the expression sin315cos315+sin420cos330\sin 315^\circ \cos 315^\circ + \sin 420^\circ \cos 330^\circ as 14\dfrac{1}{4}.

Note: A common mistake is to convert cos330=cos(36030)\cos 330^\circ = \cos \left( {360^\circ - 30^\circ } \right) to sin30\sin 30^\circ . This is incorrect because 360360^\circ is an even multiple of 9090^\circ . If we rewrite cos330\cos 330^\circ as cos(270+60)\cos \left( {270^\circ + 60^\circ } \right), then only it will become sin60\sin 60^\circ , which is equal to 32\dfrac{{\sqrt 3 }}{2}. Here, cosine gets converted to sine because 270270^\circ is an odd multiple of 9090^\circ .