Solveeit Logo

Question

Question: Find the value of \[\sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ }\] A. \...

Find the value of sin22cos38+cos22sin38\sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ }
A. 12\dfrac{1}{2}
B. 32\dfrac{{ - \sqrt 3 }}{2}
C. 32\dfrac{{\sqrt 3 }}{2}
D. 12\dfrac{1}{{\sqrt 2 }}

Explanation

Solution

We multiply and divide the given equation by 2. Form two separate equations relating to the formulas of trigonometry i.e. 2sinAcosB2\sin A\cos B and 2cosAsinB2\cos A\sin B. Use the formulas and solve the equation.

  • 2sinAcosB=sin(A+B)cos(AB)2\sin A\cos B = \sin (A + B)\cos (A - B) and 2cosAsinB=sin(A+B)sin(AB)2\cos A\sin B = \sin (A + B) - \sin (A - B)

Complete step-by-step answer:
We are given the equation sin22cos38+cos22sin38\sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ }
Multiply and divide the given equation by 2
sin22cos38+cos22sin38=12[2(sin22cos38+cos22sin38)]\Rightarrow \sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ } = \dfrac{1}{2}\left[ {2\left( {\sin {{22}^ \circ }\cos {{38}^ \circ } + \cos {{22}^ \circ }\sin {{38}^ \circ }} \right)} \right]
Multiply 2 to each term of RHS
sin22cos38+cos22sin38=12[(2sin22cos38)+(2cos22sin38)]\Rightarrow \sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ } = \dfrac{1}{2}\left[ {\left( {2\sin {{22}^ \circ }\cos {{38}^ \circ }} \right) + \left( {2\cos {{22}^ \circ }\sin {{38}^ \circ }} \right)} \right]...............… (1)
We know 2sinAcosB=sin(A+B)cos(AB)2\sin A\cos B = \sin (A + B)\cos (A - B)and2cosAsinB=sin(A+B)sin(AB)2\cos A\sin B = \sin (A + B) - \sin (A - B)
Here A=22,B=38A = {22^ \circ },B = {38^ \circ }
2sin22cos38=sin(22+38)+sin(2238)\Rightarrow 2\sin {22^ \circ }\cos {38^ \circ } = \sin ({22^ \circ } + {38^ \circ }) + \sin ({22^ \circ } - {38^ \circ })and
2cos22sin38=sin(22+38)sin(2238)2\cos {22^ \circ }\sin {38^ \circ } = \sin ({22^ \circ } + {38^ \circ }) - \sin ({22^ \circ } - {38^ \circ })
Substitute the values obtained in RHS of equation (1)
sin22cos38+cos22sin38=12[sin(22+38)+sin(2238)+sin(22+38)sin(2238)]\Rightarrow \sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ } = \dfrac{1}{2}\left[ {\sin ({{22}^ \circ } + {{38}^ \circ }) + \sin ({{22}^ \circ } - {{38}^ \circ }) + \sin ({{22}^ \circ } + {{38}^ \circ }) - \sin ({{22}^ \circ } - {{38}^ \circ })} \right]
Cancel terms having same magnitudes and opposite signs
sin22cos38+cos22sin38=12[sin(22+38)+sin(22+38)]\Rightarrow \sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ } = \dfrac{1}{2}\left[ {\sin \left( {{{22}^ \circ } + {{38}^ \circ }} \right) + \sin \left( {{{22}^ \circ } + {{38}^ \circ }} \right)} \right]
Add like terms in RHS of the equation
sin22cos38+cos22sin38=12[2sin(22+38)]\Rightarrow \sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ } = \dfrac{1}{2}\left[ {2\sin ({{22}^ \circ } + {{38}^ \circ })} \right]
Add the angles in the bracket in RHS of the equation
sin22cos38+cos22sin38=12[2sin60]\Rightarrow \sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ } = \dfrac{1}{2}\left[ {2\sin {{60}^ \circ }} \right]
Cancel same factors from numerator and denominator in RHS of the equation
sin22cos38+cos22sin38=sin60\Rightarrow \sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ } = \sin {60^ \circ }
We know the value of sin60=32\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}
sin22cos38+cos22sin38=32\Rightarrow \sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ } = \dfrac{{\sqrt 3 }}{2}

\therefore Option C is correct.

Note: Students many times try to find the value of the functions from the calculator and directly substitute those values in the equation. Students are advised not to proceed in this way as the value can be found very easily using trigonometric formulas. Many students don’t remember the value of sine function directly; they are advised to take the help of the table which gives us the values of some trigonometric functions at common angles like 0,30,45,60,90{0^ \circ },{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ } is

ANGLEFUNCTION0{0^ \circ }30{30^ \circ }45{45^ \circ }60{60^ \circ }90{90^ \circ }
Sin012\dfrac{1}{2}12\dfrac{1}{{\sqrt 2 }}32\dfrac{{\sqrt 3 }}{2}1
Cos132\dfrac{{\sqrt 3 }}{2}12\dfrac{1}{{\sqrt 2 }}12\dfrac{1}{2}0
Tan013\dfrac{1}{{\sqrt 3 }}13\sqrt 3 Not defined

Students can solve this question by carefully observing the given equation and comparing it to the general trigonometric formula of sin(A+B)\sin (A + B).
We are given sin22cos38+cos22sin38\sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ }
We know the identity sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
If we put the values A=22,B=38A = {22^ \circ },B = {38^ \circ }in the formula
sin22cos38+cos22sin38=sin(22+38)\Rightarrow \sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ } = \sin ({22^ \circ } + {38^ \circ })
Add the angles in the bracket in RHS of the equation
sin22cos38+cos22sin38=sin60\Rightarrow \sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ } = \sin {60^ \circ }
Substitute the value of sin60=32\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}
sin22cos38+cos22sin38=32\Rightarrow \sin {22^ \circ }\cos {38^ \circ } + \cos {22^ \circ }\sin {38^ \circ } = \dfrac{{\sqrt 3 }}{2}
\therefore Option C is correct.