Solveeit Logo

Question

Question: Find the value of \({\sin ^2}{5^ \circ } + {\sin ^2}{10^ \circ } + {\sin ^2}{15^ \circ } + ... + {\s...

Find the value of sin25+sin210+sin215+...+sin290{\sin ^2}{5^ \circ } + {\sin ^2}{10^ \circ } + {\sin ^2}{15^ \circ } + ... + {\sin ^2}{90^ \circ }
A) 172\dfrac{{17}}{2}
B) 192\dfrac{{19}}{2}
C) 212\dfrac{{21}}{2}
D) 232\dfrac{{23}}{2}

Explanation

Solution

At first we need to combine the terms in order in which we can write sin2(90θ)=cos2θ{\sin ^2}({90^ \circ } - \theta ) = {\cos ^2}\theta and by using the identity sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 we get the value of sin25+sin210+sin215+...+sin290{\sin ^2}{5^ \circ } + {\sin ^2}{10^ \circ } + {\sin ^2}{15^ \circ } + ... + {\sin ^2}{90^ \circ }

Complete step by step solution:
We can combine the given terms as follows
(sin25+sin285)+(sin210+sin280)+(sin215+sin275)+...+(sin240+sin250)+sin245+sin290\Rightarrow ({\sin ^2}{5^ \circ } + {\sin ^2}{85^ \circ }) + ({\sin ^2}{10^ \circ } + {\sin ^2}{80^ \circ }) + ({\sin ^2}{15^ \circ } + {\sin ^2}{75^ \circ }) + ... + ({\sin ^2}{40^ \circ } + {\sin ^2}{50^ \circ }) + {\sin ^2}{45^ \circ } + {\sin ^2}{90^ \circ }
Now sin2θ\sin ^{2} \theta can be written has sin2(90θ)=cos2θ{\sin ^2}({90^ \circ } - \theta ) = {\cos ^2}\theta
(sin25+sin2(905))+(sin210+sin2(9010))+...+(sin240+sin2(9040))+sin245+sin290\Rightarrow ({\sin ^2}{5^ \circ } + {\sin ^2}({90^ \circ } - 5)) + ({\sin ^2}{10^ \circ } + {\sin ^2}({90^ \circ } - 10)) + ... + ({\sin ^2}{40^ \circ } + {\sin ^2}({90^ \circ } - 40)) + {\sin ^2}{45^ \circ } + {\sin ^2}{90^ \circ }
(sin25+cos25)+(sin210+cos210)+(sin215+cos215)+...+(sin240+cos240)+sin245+sin290\Rightarrow ({\sin ^2}{5^ \circ } + {\cos ^2}{5^ \circ }) + ({\sin ^2}{10^ \circ } + {\cos ^2}{10^ \circ }) + ({\sin ^2}{15^ \circ } + {\cos ^2}{15^ \circ }) + ... + ({\sin ^2}{40^ \circ } + {\cos ^2}{40^ \circ }) + {\sin ^2}{45^ \circ } + {\sin ^2}{90^ \circ }
We know that sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
We get,

1+1+1+1+1+1+1+1+sin245+sin290 8+(12)2+1 9+12=18+12=192  \Rightarrow 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + {\sin ^2}{45^ \circ } + {\sin ^2}{90^ \circ } \\\ \Rightarrow 8 + {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} + 1 \\\ \Rightarrow 9 + \dfrac{1}{2} = \dfrac{{18 + 1}}{2} = \dfrac{{19}}{2} \\\

Therefore the correct option is (B).

Note:
An equation is called an identity when it is true for all values of the variables involved. Similarly, an equation involving trigonometric ratios of an angle is called a trigonometric identity, if it is true for all values of the angles involved.