Question
Question: Find the value of \({\sin ^2}{5^ \circ } + {\sin ^2}{10^ \circ } + {\sin ^2}{15^ \circ } + ... + {\s...
Find the value of sin25∘+sin210∘+sin215∘+...+sin290∘
A) 217
B) 219
C) 221
D) 223
Solution
At first we need to combine the terms in order in which we can write sin2(90∘−θ)=cos2θand by using the identity sin2θ+cos2θ=1 we get the value of sin25∘+sin210∘+sin215∘+...+sin290∘
Complete step by step solution:
We can combine the given terms as follows
⇒(sin25∘+sin285∘)+(sin210∘+sin280∘)+(sin215∘+sin275∘)+...+(sin240∘+sin250∘)+sin245∘+sin290∘
Now sin2θ can be written has sin2(90∘−θ)=cos2θ
⇒(sin25∘+sin2(90∘−5))+(sin210∘+sin2(90∘−10))+...+(sin240∘+sin2(90∘−40))+sin245∘+sin290∘
⇒(sin25∘+cos25∘)+(sin210∘+cos210∘)+(sin215∘+cos215∘)+...+(sin240∘+cos240∘)+sin245∘+sin290∘
We know that sin2θ+cos2θ=1
We get,
Therefore the correct option is (B).
Note:
An equation is called an identity when it is true for all values of the variables involved. Similarly, an equation involving trigonometric ratios of an angle is called a trigonometric identity, if it is true for all values of the angles involved.