Solveeit Logo

Question

Question: Find the value of \[\sin {15^ \circ } + \cos {105^ \circ } = \]....

Find the value of sin15+cos105=\sin {15^ \circ } + \cos {105^ \circ } = .

Explanation

Solution

Here we will first find the value of sin15\sin {15^ \circ } using the formula:
sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
Then we will find the value of cos105\cos {105^ \circ } using the formula:
cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B and then add the values so obtained to get the desired answer.

Complete step-by-step answer:
The given expression is:
sin15+cos105\sin {15^ \circ } + \cos {105^ \circ }
We will first find the value of sin15\sin {15^ \circ }
Now we know that 15=6045{15^ \circ } = {60^ \circ } - {45^ \circ }
Hence replacing this value we get:-
sin15=sin(6045)\sin {15^ \circ } = \sin \left( {{{60}^ \circ } - {{45}^ \circ }} \right)
Now applying the following formula:
sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
We get:-
sin(6045)=sin60cos45cos60sin45\sin \left( {{{60}^ \circ } - {{45}^ \circ }} \right) = \sin {60^ \circ }\cos {45^ \circ } - \cos {60^ \circ }\sin {45^ \circ }
Now we know that:
sin60=32\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}
cos45=sin45=12\cos {45^ \circ } = \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}
cos60=12\cos {60^ \circ } = \dfrac{1}{2}
Therefore, putting the respective values we get:-
sin(15)=32×1212×12\sin \left( {{{15}^ \circ }} \right) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}
Simplifying it further we get:-
sin(15)=3122\sin \left( {{{15}^ \circ }} \right) = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}……………………….(1)
Now we will calculate the value of cos105\cos {105^ \circ }
We know that:-
105=60+45{105^ \circ } = {60^ \circ } + {45^ \circ }
Hence replacing this value we get:-
cos105=cos(60+45)\cos {105^ \circ } = \cos \left( {{{60}^ \circ } + {{45}^ \circ }} \right)
Now applying the following formula:
cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B
We get:-
cos(60+45)=cos60cos45sin60sin45\cos \left( {{{60}^ \circ } + {{45}^ \circ }} \right) = \cos {60^ \circ }\cos {45^ \circ } - \sin {60^ \circ }\sin {45^ \circ }
Now we know that:
sin60=32\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}
cos45=sin45=12\cos {45^ \circ } = \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}
cos60=12\cos {60^ \circ } = \dfrac{1}{2}
Therefore, putting the respective values we get:-
cos105=12×1232×12\cos {105^ \circ } = \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}
Simplifying it further we get:-
cos105=1322\cos {105^ \circ } = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}……………………….(2)
Adding (1) and (2) we get:-
sin15+cos105=3122+1322\sin {15^ \circ } + \cos {105^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}
Taking LCM and solving it further we get:-
sin15+cos105=31+1322\sin {15^ \circ } + \cos {105^ \circ } = \dfrac{{\sqrt 3 - 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }}
sin15+cos105=0\Rightarrow \sin {15^ \circ } + \cos {105^ \circ } = 0

Hence the answer is 0.

Note: Students can also use the fact that cos(90+θ)=sinθ\cos \left( {{{90}^ \circ } + \theta } \right) = - \sin \theta and then simplify the expression so obtained.
cos105=cos(90+15)\cos {105^ \circ } = \cos \left( {{{90}^ \circ } + {{15}^ \circ }} \right)
Applying the above identity we get:-
cos105=sin15\cos {105^ \circ } = - \sin {15^ \circ }
Now we have to find the value of sin15+cos105\sin {15^ \circ } + \cos {105^ \circ }
Hence substituting the value we get:-
sin15+cos105=sin15sin15\sin {15^ \circ } + \cos {105^ \circ } = \sin {15^ \circ } - \sin {15^ \circ }
sin15+cos105=0\Rightarrow \sin {15^ \circ } + \cos {105^ \circ } = 0