Question
Question: Find the value of \[\sin {15^ \circ } + \cos {105^ \circ } = \]....
Find the value of sin15∘+cos105∘=.
Solution
Here we will first find the value of sin15∘ using the formula:
sin(A−B)=sinAcosB−cosAsinB
Then we will find the value of cos105∘ using the formula:
cos(A+B)=cosAcosB−sinAsinB and then add the values so obtained to get the desired answer.
Complete step-by-step answer:
The given expression is:
sin15∘+cos105∘
We will first find the value of sin15∘
Now we know that 15∘=60∘−45∘
Hence replacing this value we get:-
sin15∘=sin(60∘−45∘)
Now applying the following formula:
sin(A−B)=sinAcosB−cosAsinB
We get:-
sin(60∘−45∘)=sin60∘cos45∘−cos60∘sin45∘
Now we know that:
sin60∘=23
cos45∘=sin45∘=21
cos60∘=21
Therefore, putting the respective values we get:-
sin(15∘)=23×21−21×21
Simplifying it further we get:-
sin(15∘)=223−1……………………….(1)
Now we will calculate the value of cos105∘
We know that:-
105∘=60∘+45∘
Hence replacing this value we get:-
cos105∘=cos(60∘+45∘)
Now applying the following formula:
cos(A+B)=cosAcosB−sinAsinB
We get:-
cos(60∘+45∘)=cos60∘cos45∘−sin60∘sin45∘
Now we know that:
sin60∘=23
cos45∘=sin45∘=21
cos60∘=21
Therefore, putting the respective values we get:-
cos105∘=21×21−23×21
Simplifying it further we get:-
cos105∘=221−3……………………….(2)
Adding (1) and (2) we get:-
sin15∘+cos105∘=223−1+221−3
Taking LCM and solving it further we get:-
sin15∘+cos105∘=223−1+1−3
⇒sin15∘+cos105∘=0
Hence the answer is 0.
Note: Students can also use the fact that cos(90∘+θ)=−sinθ and then simplify the expression so obtained.
cos105∘=cos(90∘+15∘)
Applying the above identity we get:-
cos105∘=−sin15∘
Now we have to find the value of sin15∘+cos105∘
Hence substituting the value we get:-
sin15∘+cos105∘=sin15∘−sin15∘
⇒sin15∘+cos105∘=0