Question
Question: Find the value of: \[\sin {{120}^{\circ }}\cos {{150}^{\circ }}+\cos {{240}^{\circ }}\sin {{330}^{\c...
Find the value of: sin120∘cos150∘+cos240∘sin330∘=?
Solution
Hint: We can solve this using quadrants, take each value and find which quadrant it belongs to and simplify it. When all the simplified values are found, use the trigonometric table to get the value of the function.
Complete step-by-step answer:
Let us use the ASTC rules to determine the sign of the ratio and quadrant expressions. Let us consider the original angle given as θ and the auxiliary value as α, this can be generated according to the quadrant taken.
For quadrant II, we can write that, θ=180−α.
For quadrant III, we can write that, θ=180+α.
For quadrant IV, we can write that, θ=360−α.
Now let us take our 1st value, sin120∘.
120∘ lies in the II quadrant.
∴sin120∘=sin(180−α)=sin(180−60∘)
In quadrant II, sine is positive hence,
∴sin120∘=sin(180−α)=sin(180−60∘)=sin60∘
Now let us consider out 2nd value, cos150∘.
It lies in quadrant II and the value of cosine is negative in II quadrant.
cos150∘=cos(180−α)
=cos(180−30)=−cos30∘
∴cos150∘=−cos30∘
Now let us consider cos240∘. 240∘ lies in the 3rd quadrant. Cosine function is negative in the 3rd quadrant.
∴cos240∘=cos(180+α)
=−cos(180+60∘)=−cos60∘
∴cos240∘=−cos60∘
Similarly, sin330∘, 330∘ lies in the 4th quadrant. Sine function is negative in the 4th quadrant.
sin330∘=sin(360−α)
=−sin(360−30∘)=−sin30∘
∴sin330∘=−sin30∘
Hence, we can write that,