Solveeit Logo

Question

Question: Find the value of \[\sin 12^\circ \sin 48^\circ \sin 54^\circ = \] A.\[\dfrac{1}{{16}}\] B.\[\df...

Find the value of sin12sin48sin54=\sin 12^\circ \sin 48^\circ \sin 54^\circ =
A.116\dfrac{1}{{16}}
B.132\dfrac{1}{{32}}
C.18\dfrac{1}{8}
D.14\dfrac{1}{4}

Explanation

Solution

Here, we will multiply and divide the given expression by 2 so as to make it in the form of a trigonometric identity. Then using the trigonometric formulas, we will simplify the expression. Again, we will rewrite the equation in the form of a trigonometric identity by multiplying and dividing it by 2. Then using the trigonometric formulas, we will simplify the expression to get the required value.

Formula Used: We will use the following formulas:
1.2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)
2.2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)

Complete step-by-step answer:
We have to find the value of: sin12sin48sin54\sin 12^\circ \sin 48^\circ \sin 54^\circ
Now, this can also be written as:
(sin48sin12)sin54\left( {\sin 48^\circ \sin 12^\circ } \right)\sin 54^\circ
Now, multiplying and dividing by 2,
(sin48sin12)sin54=12(2sin48sin12)sin54\Rightarrow \left( {\sin 48^\circ \sin 12^\circ } \right)\sin 54^\circ = \dfrac{1}{2}\left( {2\sin 48^\circ \sin 12^\circ } \right)\sin 54^\circ
Now, using the formula: 2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right), we get
sin12sin48sin54=12[cos(4812)cos(48+12)]sin54\Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{2}\left[ {\cos \left( {48^\circ - 12^\circ } \right) - \cos \left( {48^\circ + 12^\circ } \right)} \right]\sin 54^\circ
Subtracting the angles in the bracket, we get
sin12sin48sin54=12[cos36cos60]sin54\Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{2}\left[ {\cos 36^\circ - \cos 60^\circ } \right]\sin 54^\circ
According to the trigonometric tables, we know that: cos60=12\cos 60^\circ = \dfrac{1}{2}.
Substituting cos60=12\cos 60^\circ = \dfrac{1}{2} in the above equation, we get
sin12sin48sin54=12[cos3612]sin54\Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{2}\left[ {\cos 36^\circ - \dfrac{1}{2}} \right]\sin 54^\circ
Multiplying the terms, we get
sin12sin48sin54=12[sin54cos3612sin54]\Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{2}\left[ {\sin 54^\circ \cos 36^\circ - \dfrac{1}{2}\sin 54^\circ } \right]
Again, multiplying and dividing the RHS by 2, we get
sin12sin48sin54=14[2sin54cos36sin54]\Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {2\sin 54^\circ \cos 36^\circ - \sin 54^\circ } \right]
Now, using the formula, 2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right), we get
sin12sin48sin54=14[sin(54+36)+sin(5436)sin54]\Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {\sin \left( {54^\circ + 36^\circ } \right) + \sin \left( {54^\circ - 36^\circ } \right) - \sin 54^\circ } \right]
sin12sin48sin54=14[sin90+sin18sin54]\Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {\sin 90^\circ + \sin 18^\circ - \sin 54^\circ } \right]
We know that the trigonometric tables, sin90=1\sin 90^\circ = 1, sin18=514\sin 18^\circ = \dfrac{{\sqrt 5 - 1}}{4} and sin54=5+14\sin 54^\circ = \dfrac{{\sqrt 5 + 1}}{4}.
Hence, substituting these values in the above equation, we get,
sin12sin48sin54=14[1+5145+14]\Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {1 + \dfrac{{\sqrt 5 - 1}}{4} - \dfrac{{\sqrt 5 + 1}}{4}} \right]
Subtracting the terms, we get
sin12sin48sin54=14[1+51514]\Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {1 + \dfrac{{\sqrt 5 - 1 - \sqrt 5 - 1}}{4}} \right]
Solving further, we get,
sin12sin48sin54=14[112]=14[12]\Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {1 - \dfrac{1}{2}} \right] = \dfrac{1}{4}\left[ {\dfrac{1}{2}} \right]
sin12sin48sin54=18\Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{8}
Therefore, the required value of sin12sin48sin54=18\sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{8}
Hence, option C is the correct answer.

Note: While solving this question, we have taken the first two angles in brackets because they make a sum equal to 6060^\circ which is an angle whose value is given in the trigonometric table. Hence, when we will use the required trigonometric formula in the bracket formed, and then we will find one angle by its value. Also, it is really important to take sine with a larger angle as first term and the sine with smaller angle as second term while solving the product. This is to avoid the use of quadrants in this question to remove the negative sign further.