Solveeit Logo

Question

Question: Find the value of \(\sin (105^\circ ) + \cos (105^\circ )\). A) \(\dfrac{1}{2}\) B) \(\dfrac{3}{...

Find the value of sin(105)+cos(105)\sin (105^\circ ) + \cos (105^\circ ).
A) 12\dfrac{1}{2}
B) 32\dfrac{3}{2}
C) 2\sqrt 2
D) 12\dfrac{1}{{\sqrt 2 }}

Explanation

Solution

We have trigonometric equations for finding sin(A+B)\sin (A + B) and cos(A+B)\cos (A + B). The given angle, 105105^\circ can be written as the sum of 6060^\circ and 4545^\circ . Thus we can apply the sum equations and substitute the known values. Then by simplifying the equation we get the answer.

Formula used: For any angles A,BA,Bwe have,
sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
cos(A+B)=cosAcosBsinAsinB\cos (A + B) = \cos A\cos B - \sin A\sin B
sin45=12\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}
sin60=32\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}
cos45=12\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}
cos60=12\cos 60^\circ = \dfrac{1}{2}

Complete step-by-step answer:
We are asked to find the value of sin(105)+cos(105)\sin (105^\circ ) + \cos (105^\circ ).
We can write 105105as the sum of 6060^\circ and 4545^\circ .
Thus we get,
sin(105)=sin(60+45)\sin (105^\circ ) = \sin (60^\circ + 45^\circ )
cos(105)=cos(60+45)\cos (105^\circ ) = \cos (60^\circ + 45^\circ )
For any angles A,BA,Bwe have,
sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
cos(A+B)=cosAcosBsinAsinB\cos (A + B) = \cos A\cos B - \sin A\sin B
We can substitute A=60,B=45A = 60^\circ ,B = 45^\circ in the above two equations.
So we have,
sin(60+45)=sin60cos45+cos60sin45(i)\sin (60^\circ + 45^\circ ) = \sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ - - - (i)
cos(60+45)=cos60cos45sin60sin45(ii)\cos (60^\circ + 45^\circ ) = \cos 60^\circ \cos 45^\circ - \sin 60^\circ \sin 45^\circ - - - (ii)
Also we know these trigonometric values.
sin45=12\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}
sin60=32\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}
cos45=12\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}
cos60=12\cos 60^\circ = \dfrac{1}{2}
Substituting these values in the above equations we have,
(i)sin(60+45)=32×12+12×12(i) \Rightarrow \sin (60^\circ + 45^\circ ) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}
Simplifying the expression we get,
sin(60+45)=322+122\Rightarrow \sin (60^\circ + 45^\circ ) = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }}
sin(60+45)=3+122\Rightarrow \sin (60^\circ + 45^\circ ) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}
(ii)cos(60+45)=12×1232×12(ii) \Rightarrow \cos (60^\circ + 45^\circ ) = \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}
Simplifying the expression we get,
cos(60+45)=122322\Rightarrow \cos (60^\circ + 45^\circ ) = \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}
cos(60+45)=1322\Rightarrow \cos (60^\circ + 45^\circ ) = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}
We need to find the value of sin(105)+cos(105)\sin (105^\circ ) + \cos (105^\circ ).
We have,
sin(105)=sin(60+45)\sin (105^\circ ) = \sin (60^\circ + 45^\circ )
cos(105)=cos(60+45)\cos (105^\circ ) = \cos (60^\circ + 45^\circ )
And
sin(60+45)=3+122\sin (60^\circ + 45^\circ ) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}
cos(60+45)=1322\cos (60^\circ + 45^\circ ) = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}
Combining these two results, we get
sin(105)=3+122\sin (105^\circ ) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}
cos(105)=1322\cos (105^\circ ) = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}
So we have,
sin(105)+cos(105)=3+122+1322\sin (105^\circ ) + \cos (105^\circ ) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}
Simplifying the right hand side we get,
sin(105)+cos(105)=3+1+1322\sin (105^\circ ) + \cos (105^\circ ) = \dfrac{{\sqrt 3 + 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }}
sin(105)+cos(105)=222\Rightarrow \sin (105^\circ ) + \cos (105^\circ ) = \dfrac{2}{{2\sqrt 2 }}
Dividing numerator and denominator by 22 we get,
sin(105)+cos(105)=12\Rightarrow \sin (105^\circ ) + \cos (105^\circ ) = \dfrac{1}{{\sqrt 2 }}

\therefore The answer is option D.

Note: Here we get the answer as 12\dfrac{1}{{\sqrt 2 }} which belongs to the options. In some cases, instead of giving the answer directly, we may give it in another way. This value 12\dfrac{1}{{\sqrt 2 }} is equal to sin45\sin 45^\circ and cos45\cos 45^\circ . So, any of these answers, if there are options will be correct. Also the given angle 105105^\circ can be split into a sum in different ways. But we particularly chose 60+4560^\circ + 45^\circ , since trigonometric values are known for these angles. So we could substitute them and simplify to get the answer.