Question
Question: Find the value of \(\sin (105^\circ ) + \cos (105^\circ )\). A) \(\dfrac{1}{2}\) B) \(\dfrac{3}{...
Find the value of sin(105∘)+cos(105∘).
A) 21
B) 23
C) 2
D) 21
Solution
We have trigonometric equations for finding sin(A+B) and cos(A+B). The given angle, 105∘ can be written as the sum of 60∘ and 45∘. Thus we can apply the sum equations and substitute the known values. Then by simplifying the equation we get the answer.
Formula used: For any angles A,Bwe have,
sin(A+B)=sinAcosB+cosAsinB
cos(A+B)=cosAcosB−sinAsinB
sin45∘=21
sin60∘=23
cos45∘=21
cos60∘=21
Complete step-by-step answer:
We are asked to find the value of sin(105∘)+cos(105∘).
We can write 105as the sum of 60∘ and 45∘.
Thus we get,
sin(105∘)=sin(60∘+45∘)
cos(105∘)=cos(60∘+45∘)
For any angles A,Bwe have,
sin(A+B)=sinAcosB+cosAsinB
cos(A+B)=cosAcosB−sinAsinB
We can substitute A=60∘,B=45∘ in the above two equations.
So we have,
sin(60∘+45∘)=sin60∘cos45∘+cos60∘sin45∘−−−(i)
cos(60∘+45∘)=cos60∘cos45∘−sin60∘sin45∘−−−(ii)
Also we know these trigonometric values.
sin45∘=21
sin60∘=23
cos45∘=21
cos60∘=21
Substituting these values in the above equations we have,
(i)⇒sin(60∘+45∘)=23×21+21×21
Simplifying the expression we get,
⇒sin(60∘+45∘)=223+221
⇒sin(60∘+45∘)=223+1
(ii)⇒cos(60∘+45∘)=21×21−23×21
Simplifying the expression we get,
⇒cos(60∘+45∘)=221−223
⇒cos(60∘+45∘)=221−3
We need to find the value of sin(105∘)+cos(105∘).
We have,
sin(105∘)=sin(60∘+45∘)
cos(105∘)=cos(60∘+45∘)
And
sin(60∘+45∘)=223+1
cos(60∘+45∘)=221−3
Combining these two results, we get
sin(105∘)=223+1
cos(105∘)=221−3
So we have,
sin(105∘)+cos(105∘)=223+1+221−3
Simplifying the right hand side we get,
sin(105∘)+cos(105∘)=223+1+1−3
⇒sin(105∘)+cos(105∘)=222
Dividing numerator and denominator by 2 we get,
⇒sin(105∘)+cos(105∘)=21
∴ The answer is option D.
Note: Here we get the answer as 21 which belongs to the options. In some cases, instead of giving the answer directly, we may give it in another way. This value 21 is equal to sin45∘ and cos45∘. So, any of these answers, if there are options will be correct. Also the given angle 105∘ can be split into a sum in different ways. But we particularly chose 60∘+45∘, since trigonometric values are known for these angles. So we could substitute them and simplify to get the answer.