Solveeit Logo

Question

Question: Find the value of \( \sin {10^ \circ } + \sin {130^ \circ } - \sin {110^ \circ } \) ?...

Find the value of sin10+sin130sin110\sin {10^ \circ } + \sin {130^ \circ } - \sin {110^ \circ } ?

Explanation

Solution

Hint : In order to solve the above equation, there is only use of trigonometric identities. Trigonometric identities are some fixed formulas obtained to solve the trigonometric equations. Take two operands at a time, apply the formula described below and then solve it to get another operand, then continue the process with the left operand.
Formula used:
sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)
cos(x)=cosx\cos \left( { - x} \right) = \cos x
cos(90)=0\cos \left( {{{90}^ \circ }} \right) = 0
cos(60)=12\cos \left( {{{60}^ \circ }} \right) = \dfrac{1}{2}

Complete step by step solution:
We are given the equation sin10+sin130sin110\sin {10^ \circ } + \sin {130^ \circ } - \sin {110^ \circ } .
Taking two operands at a time suppose sin10\sin {10^ \circ } and sin130\sin {130^ \circ } , pairing them in a parenthesis, and we get:
(sin10+sin130)sin110\left( {\sin {{10}^ \circ } + \sin {{130}^ \circ }} \right) - \sin {110^ \circ } …………….(1)
From the trigonometric identities, we know that
sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) .
Comparing the value inside the brackets
sin10+sin130\sin {10^ \circ } + \sin {130^ \circ } with sinA+sinB\sin A + \sin B , we get the value of:
A=10A = {10^ \circ }
B=130B = {130^ \circ }
Substituting these values in the formula sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) :
sin10+sin130=2sin(10+1302)cos(101302)\sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {\dfrac{{{{10}^ \circ } + {{130}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{10}^ \circ } - {{130}^ \circ }}}{2}} \right)
Solving the values inside the parenthesis, we get:
sin10+sin130=2sin(1402)cos(1202)\sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {\dfrac{{{{140}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{ - {{120}^ \circ }}}{2}} \right)
sin10+sin130=2sin(70)cos(60)\sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {{{70}^ \circ }} \right)\cos \left( { - {{60}^ \circ }} \right) ……….(2)
Since, we know that cosine is an even function that gives cos(x)=cosx\cos \left( { - x} \right) = \cos x .So from this we get cos(60)=cos(60)\cos \left( { - {{60}^ \circ }} \right) = \cos \left( {{{60}^ \circ }} \right) .
Substituting this value in equation (2), we get:
sin10+sin130=2sin(70)cos(60)\sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {{{70}^ \circ }} \right)\cos \left( {{{60}^ \circ }} \right)
Since, we know that cos(60)=12\cos \left( {{{60}^ \circ }} \right) = \dfrac{1}{2} , so substituting this in the above value, we get:
sin10+sin130=2sin(70)×12\sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {{{70}^ \circ }} \right) \times \dfrac{1}{2}
Cancelling out the 2s2's we get:
sin10+sin130=sin(70)\sin {10^ \circ } + \sin {130^ \circ } = \sin \left( {{{70}^ \circ }} \right)
Now, substituting this value in the main equation that is equation (1):
(sin10+sin130)sin110\left( {\sin {{10}^ \circ } + \sin {{130}^ \circ }} \right) - \sin {110^ \circ }
sin70sin110\Rightarrow \sin {70^ \circ } - \sin {110^ \circ } …………..(3)
From the trigonometric formulas, we know that
sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) .
Comparing the equation (3) , sin70sin110\sin {70^ \circ } - \sin {110^ \circ } with sinAsinB\sin A - \sin B , we get the value of:
A=70A = {70^ \circ }
B=110B = {110^ \circ }
Substituting these values in the formula
sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) :
sin70+sin110=2cos(70+1102)sin(701102)\sin {70^ \circ } + \sin {110^ \circ } = 2\cos \left( {\dfrac{{{{70}^ \circ } + {{110}^ \circ }}}{2}} \right)\sin \left( {\dfrac{{{{70}^ \circ } - {{110}^ \circ }}}{2}} \right)
Solving the values inside the parenthesis, we get:
sin70+sin110=2cos(1802)sin(402)\sin {70^ \circ } + \sin {110^ \circ } = 2\cos \left( {\dfrac{{{{180}^ \circ }}}{2}} \right)\sin \left( {\dfrac{{ - {{40}^ \circ }}}{2}} \right)
sin70+sin110=2cos(90)sin(20)\sin {70^ \circ } + \sin {110^ \circ } = 2\cos \left( {{{90}^ \circ }} \right)\sin \left( { - {{20}^ \circ }} \right)
Since, we know that cos(90)=0\cos \left( {{{90}^ \circ }} \right) = 0 , so substituting this in the above value, we get:
sin70+sin110=2×0×sin(20)\sin {70^ \circ } + \sin {110^ \circ } = 2 \times 0 \times \sin \left( { - {{20}^ \circ }} \right)
Solving the equation:
sin70+sin110=0\sin {70^ \circ } + \sin {110^ \circ } = 0
Therefore, the value of sin10+sin130sin110\sin {10^ \circ } + \sin {130^ \circ } - \sin {110^ \circ } is 00 .
So, the correct answer is “0”.

Note : It’s not compulsory to take the first two operands only, we could have taken sin10,sin110\sin {10^ \circ },\sin {110^ \circ } in the first step, then further with the third as (sin10sin110)+sin130\left( {\sin {{10}^ \circ } - \sin {{110}^ \circ }} \right) + \sin {130^ \circ } , it would have resulted in the same answer.
It’s important to remember the correct trigonometric identities and should be placed in their appropriate value in order to avoid mistakes