Solveeit Logo

Question

Question: Find the value of \({{\sin }^{-1}}\left( \sin 10 \right)\) is: A) 10 B) \(10-3\pi \) C) \(3\p...

Find the value of sin1(sin10){{\sin }^{-1}}\left( \sin 10 \right) is:
A) 10
B) 103π10-3\pi
C) 3π103\pi -10
D) -10

Explanation

Solution

Hint: Take y=sin1(sin10)y={{\sin }^{-1}}\left( \sin 10 \right) and take sin of both sides of the equation and you will get sin10=siny\sin 10=\sin y and then we use general solution of siny=sinx\sin y=\sin x : y=2nπ+xy=2n\pi +x and get a value of y which lie in the range [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] as range of sin1(sinx){{\sin }^{-1}}\left( \sin x \right) is [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right].

Complete step-by-step answer:
Let us assume sin1(sin10)=x{{\sin }^{-1}}\left( \sin 10 \right)=x
We know that the range of f(x)=sin1xf\left( x \right)={{\sin }^{-1}}x is [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right].
Here sin1(sin10)=x{{\sin }^{-1}}\left( \sin 10 \right)=x so x[π2,π2]x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right].
Taking sin of both sides of equations, we will get
sin10=sinx\Rightarrow \sin 10=\sin x.
We know the general solution for the equation. “siny=sinx\sin y=\sin x “ is y=x+2κπy=x+2\kappa \pi , where κ\kappa is any integer.
So, the general solution for sinx=sin10\sin x=\sin 10 will be x=10+2nπx=10+2n\pi , where n is any integer.
We have to find the value of x such that x=sin1(sin10)x={{\sin }^{-1}}\left( \sin 10 \right) and x[π2,π2]x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] .
For x=sin1(sin10)x={{\sin }^{-1}}\left( \sin 10 \right) , we have got x=10+2nπx=10+2n\pi , where ‘n’ is any integer and we know that x can belong to [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right].
So, we have to find the value of “10+2nπ10+2n\pi “ which lies in [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right], where ‘n’ is any integer.
sinθ=1\sin \theta =1 .
As π=3.14,π2=1.57\pi =3.14,\dfrac{\pi }{2}=1.57
So, (2nπ+10)\left( 2n\pi +10 \right) should belong to [1.57,1.57]\left[ -1.57,1.57 \right]
We know π=3.14\pi =3.14
So, 3π=3(3.14)=9.423\pi =3\left( 3.14 \right)=9.42
And 4π=4(3.14)=12.564\pi =4\left( 3.14 \right)=12.56 .
So, 10 will lie between 3π3\pi and 4π4\pi
i.e. 3π<10<4π3\pi <10<4\pi .
we know sin10=sin(2nπ+10),nI\sin 10=\sin \left( 2n\pi +10 \right),n\in I
Let us take n=1n=-1
2nπ+10=102π =102(3.14) =106.28 =3.72 \begin{aligned} & 2n\pi +10=10-2\pi \\\ & =10-2\left( 3.14 \right) \\\ & =10-6.28 \\\ & =3.72 \\\ \end{aligned}
Hence, sin(10)=sin(3.72)=sin(102π)\sin \left( 10 \right)=\sin \left( 3.72 \right)=\sin \left( 10-2\pi \right) ……………….(1)
But 3.72 also don’t lie between [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] i.e. (1.57,1.57)\left( -1.57,1.57 \right)
Now, we know that sin(πθ)=sinθ\sin \left( \pi -\theta \right)=\sin \theta .
Taking θ=(102π)\theta =\left( 10-2\pi \right) , we will get
sin(π(102π))=sin(102π) sin(π10+2π)=sin(102π) \begin{aligned} & \sin \left( \pi -\left( 10-2\pi \right) \right)=\sin \left( 10-2\pi \right) \\\ & \Rightarrow \sin \left( \pi -10+2\pi \right)=\sin \left( 10-2\pi \right) \\\ \end{aligned}
sin(3π10)=sin(102π)\Rightarrow \sin \left( 3\pi -10 \right)=\sin \left( 10-2\pi \right) ………….(2)
From eq (1) and (2)
sin(10)=sin(3π10)\sin \left( 10 \right)=\sin \left( 3\pi -10 \right)
And
3π10=3(3.14)10 =9.4210 =0.58 0.58[1.57,1.57] (3π10)[π2,π2] \begin{aligned} & 3\pi -10=3\left( 3.14 \right)-10 \\\ & =9.42-10 \\\ & =0.58 \\\ & 0.58\in \left[ -1.57,1.57 \right] \\\ & \Rightarrow \left( 3\pi -10 \right)\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] \\\ \end{aligned}
So, we have got an angle (3π10)\left( 3\pi -10 \right) such that sin(3π10)=sin10\sin \left( 3\pi -10 \right)=\sin 10 and 3π10[π2,π2]3\pi -10\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] .
Hence the value of sin1(sin10)=(3π10){{\sin }^{-1}}\left( \sin 10 \right)=\left( 3\pi -10 \right) and option (C) is the correct answer.

Note: Students can do mistake by directly taking sin1(sin10)=10{{\sin }^{-1}}\left( \sin 10 \right)=10 , but be careful that range of y=sin1(sinx)y={{\sin }^{-1}}\left( \sin x \right) will be [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] and 10 doesn’t belong to this range.