Solveeit Logo

Question

Question: Find the value of \({{\sec }^{-1}}[\sec (-{{30}^{\circ }})]\) ....

Find the value of sec1[sec(30)]{{\sec }^{-1}}[\sec (-{{30}^{\circ }})] .

Explanation

Solution

Hint: According to definition of inverse sec function we can write
sec1[sec(x)]=x{{\sec }^{-1}}[\sec ({{x}^{\circ }})]={{x}^{\circ }} if x[0,π2)(π2,π]x\in \left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]

Complete step-by-step answer:
Given expression is sec1[sec(30)]{{\sec }^{-1}}[\sec (-{{30}^{\circ }})]
According to definition of inverse sec function sec1[sec(x)]=x{{\sec }^{-1}}[\sec ({{x}^{\circ }})]={{x}^{\circ }} if x[0,π2)(π2,π]x\in \left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]
But 30-{{30}^{\circ }} is not in the domain of inverse sec function.
We can use sec(θ)=sec(θ)\sec \left( -\theta \right)=\sec \left( \theta \right).
So we can write sec(30)=sec(30)\sec \left( -{{30}^{\circ }} \right)=\sec \left( {{30}^{\circ }} \right)
Hence we can write given expression as sec1[sec(30)]=sec1[sec(30)]{{\sec }^{-1}}[\sec (-{{30}^{\circ }})]={{\sec }^{-1}}[\sec ({{30}^{\circ }})]
Now we can simplify it as
sec1[sec(30)]=30{{\sec }^{-1}}[\sec ({{30}^{\circ }})]={{30}^{\circ }} because 30{{30}^{\circ }} is in domain of inverse sec function.

Note: In this type of function we need to first check that angle is in the domain of inverse function or not. If angle is not in domain we need to first convert to write it in domain of inverse trigonometric function.