Solveeit Logo

Question

Question: Find the value of \(\phi \), If \(\tan \left( {\theta + i\phi } \right) = {e^{i\alpha }}\), A. \(\...

Find the value of ϕ\phi , If tan(θ+iϕ)=eiα\tan \left( {\theta + i\phi } \right) = {e^{i\alpha }},
A. 12logtan(π4+α2)\dfrac{1}{2}\log \tan \left( {\dfrac{\pi }{4} + \dfrac{\alpha }{2}} \right)
B. 12logtan(π4+α2) - \dfrac{1}{2}\log \tan \left( {\dfrac{\pi }{4} + \dfrac{\alpha }{2}} \right)
C. 12logtan(π4α2)\dfrac{1}{2}\log \tan \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)
D. 12logtan(π4α2) - \dfrac{1}{2}\log \tan \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)

Explanation

Solution

We need to convert the exponential function eiα{e^{i\alpha }} to cosα+isinα\cos \alpha + i\sin \alpha and making eiα=cosαisinα{e^{ - i\alpha }} = \cos \alpha - i\sin \alpha equation to solve and get tangent ratio. Using trigonometric ratios we need to solve the above equation. In between we might need to use the hyperbolic functions as well.

Complete step-by-step answer:
Given tan(θ+iϕ)=eiα\tan \left( {\theta + i\phi } \right) = {e^{i\alpha }}
Trigonometric values are based on three major trigonometric ratios, Sine, Cosine and Tangent.
Sine or sinθ\sin \theta = Side opposite to θ\theta is to Hypotenuse.
Cosines or Cosθ\operatorname{Cos} \theta = Adjacent side to θ\theta is to Hypotenuse.
Tangent or tanθ\tan \theta = Side opposite to θ\theta is to Adjacent side toθ\theta .
We know that eiα=cosα+isinα{e^{i\alpha }} = \cos \alpha + i\sin \alpha
According to Euler’s formula, the fundamental relationship between the trigonometric functions and the complex exponential function is given by eix=cosx+isinx{e^{ix}} = \cos x + i\sin x where x is a real number and i is imaginary number
Therefore cosα+isinα=tan(θ+iϕ)\cos \alpha + i\sin \alpha = \tan \left( {\theta + i\phi } \right)… (1)
cosαisinα=tan(θiϕ)\Rightarrow \cos \alpha - i\sin \alpha = \tan \left( {\theta - i\phi } \right)… (2)
From equations (1) and (2)
θ+iϕ=tan1eiα\theta + i\phi = {\tan ^{ - 1}}{e^{i\alpha }}… (3)
θiϕ=tan1eiα\theta - i\phi = {\tan ^{ - 1}}{e^{ - i\alpha }}… (4)
Subtracting (4) equation from (3) equation.
2iϕ=tan1(eiαeiα1+eiαeiα)\Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {\dfrac{{{e^{i\alpha }} - {e^{ - i\alpha }}}}{{1 + {e^{i\alpha }}{e^{ - i\alpha }}}}} \right)
2iϕ=tan1(cosα+isinα(cosαisinα)2)\Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {\dfrac{{\cos \alpha + i{\text{sin}}\alpha - (\cos \alpha - i{\text{sin}}\alpha )}}{2}} \right)
2iϕ=tan1(cosα+isinαcosα+isinα2)\Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {\dfrac{{\cos \alpha + i{\text{sin}}\alpha - \cos \alpha + i{\text{sin}}\alpha }}{2}} \right)
2iϕ=tan1(2isinα2)\Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {\dfrac{{2i{\text{sin}}\alpha }}{2}} \right)
2iϕ=tan1(isinα)\Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {i{\text{sin}}\alpha } \right)
tan(2iϕ)=isinα\Rightarrow \tan \left( {2i\phi } \right) = i{\text{sin}}\alpha
Hyperbolic functions are analogs of the ordinary trigonometric functions defined for the hyperbola rather than on the circle. It is a function of an angle expressed as a relationship between the distances from a point on a hyperbola to the origin and to the coordinate axes, as hyperbolic sine or hyperbolic cosine: often expressed as combinations of exponential functions.
We know that tan(iθ)=itanhθ\tan \left( {i\theta } \right) = i\tanh \theta
Therefore,
itanh(2ϕ)=isinα\Rightarrow i\tanh \left( {2\phi } \right) = i{\text{sin}}\alpha
tanh(2ϕ)=sinα\Rightarrow \tanh \left( {2\phi } \right) = {\text{sin}}\alpha
2ϕ=tanh1(sinα)\Rightarrow 2\phi = {\tanh ^{ - 1}}\left( {{\text{sin}}\alpha } \right)
We know thattanh1x=12log(1+x1x){\tanh ^{ - 1}}x = \dfrac{1}{2}\log \left( {\dfrac{{1 + x}}{{1 - x}}} \right)
Therefore,
2ϕ=12log(1 + sinα1sinα)\Rightarrow 2\phi = \dfrac{1}{2}\log \left( {\dfrac{{{\text{1 + sin}}\alpha }}{{1 - {\text{sin}}\alpha }}} \right)
Since sin2α=2tanα1+tan2α\sin 2\alpha = \dfrac{{2\tan \alpha }}{{1 + {{\tan }^2}\alpha }}
2ϕ=12log(1 + 2tanα21+tan2α212tanα21+tan2α2)\Rightarrow 2\phi = \dfrac{1}{2}\log \left( {\dfrac{{{\text{1 + }}\dfrac{{2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}}{{1 - \dfrac{{2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}}} \right)
2ϕ=12log(1+tan2α2+2tanα21+tan2α21+tan2α22tanα21+tan2α2)\Rightarrow 2\phi = \dfrac{1}{2}\log \left( {\dfrac{{\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2} + 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}}{{\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2} - 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}}} \right)
2ϕ=12log[(1+tan2α2+2tanα21+tan2α2)(1+tan2α21+tan2α22tanα2)]\Rightarrow 2\phi = \dfrac{1}{2}\log \left[ {\left( {\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2} + 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right)\left( {\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2} - 2\tan \dfrac{\alpha }{2}}}} \right)} \right]
2ϕ=12log(1+tan2α2+2tanα21+tan2α22tanα2)\Rightarrow 2\phi = \dfrac{1}{2}\log \left( {\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2} + 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2} - 2\tan \dfrac{\alpha }{2}}}} \right)
We used a2+2ab+b2=(a+b)2{a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}and a22ab+b2=(ab)2{a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2}
2ϕ=12log(1+tanα21tanα2)2\Rightarrow 2\phi = \dfrac{1}{2}\log {\left( {\dfrac{{1 + \tan \dfrac{\alpha }{2}}}{{1 - \tan \dfrac{\alpha }{2}}}} \right)^2}
2ϕ=log(1+tanα21tanα2)\Rightarrow 2\phi = \log \left( {\dfrac{{1 + \tan \dfrac{\alpha }{2}}}{{1 - \tan \dfrac{\alpha }{2}}}} \right)
Since tanπ4=1\tan \dfrac{\pi }{4} = 1
2ϕ=log(tanπ4+tanα21tanπ4tanα2)\Rightarrow 2\phi = \log \left( {\dfrac{{\tan \dfrac{\pi }{4} + \tan \dfrac{\alpha }{2}}}{{1 - \tan \dfrac{\pi }{4}\tan \dfrac{\alpha }{2}}}} \right)
ϕ=12log[tan(π4+α2)]\Rightarrow \phi = \dfrac{1}{2}\log \left[ {\tan \left( {\dfrac{\pi }{4} + \dfrac{\alpha }{2}} \right)} \right]
Therefore, If tan(θ+iϕ)=eiα\tan \left( {\theta + i\phi } \right) = {e^{i\alpha }}then ϕ=12log[tan(π4+α2)]\phi = \dfrac{1}{2}\log \left[ {\tan \left( {\dfrac{\pi }{4} + \dfrac{\alpha }{2}} \right)} \right]

Note: Trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables where both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. To solve the given type of problems we have to use the trigonometric identities.