Solveeit Logo

Question

Question: If a differentiable function 'f' satisfies the relation $f(x + y) - f(x - y) = 4xy - 10y \forall$ $x...

If a differentiable function 'f' satisfies the relation f(x+y)f(xy)=4xy10yf(x + y) - f(x - y) = 4xy - 10y \forall x,yRx, y \in R and f(1)=2f(1) = 2, then find the number of points of non-derivability of g(x)=f(x)14g(x) = \left| \left| f(|x|) \right| - \frac{1}{4} \right|.

Answer

9

Explanation

Solution

First, we need to find the function f(x)f(x). Given the relation f(x+y)f(xy)=4xy10yf(x + y) - f(x - y) = 4xy - 10y for all x,yRx, y \in R. Since ff is a differentiable function, we can differentiate this relation.

Differentiate with respect to yy: y[f(x+y)f(xy)]=y[4xy10y]\frac{\partial}{\partial y} [f(x + y) - f(x - y)] = \frac{\partial}{\partial y} [4xy - 10y] f(x+y)(1)f(xy)(1)=4x10f'(x + y) \cdot (1) - f'(x - y) \cdot (-1) = 4x - 10 f(x+y)+f(xy)=4x10f'(x + y) + f'(x - y) = 4x - 10 (Equation 1)

Differentiate with respect to xx: x[f(x+y)f(xy)]=x[4xy10y]\frac{\partial}{\partial x} [f(x + y) - f(x - y)] = \frac{\partial}{\partial x} [4xy - 10y] f(x+y)(1)f(xy)(1)=4yf'(x + y) \cdot (1) - f'(x - y) \cdot (1) = 4y f(x+y)f(xy)=4yf'(x + y) - f'(x - y) = 4y (Equation 2)

Now we have a system of two linear equations in terms of f(x+y)f'(x+y) and f(xy)f'(x-y):

  1. f(x+y)+f(xy)=4x10f'(x + y) + f'(x - y) = 4x - 10
  2. f(x+y)f(xy)=4yf'(x + y) - f'(x - y) = 4y

Add Equation 1 and Equation 2: 2f(x+y)=(4x10)+4y2f'(x + y) = (4x - 10) + 4y 2f(x+y)=4x+4y102f'(x + y) = 4x + 4y - 10 f(x+y)=2x+2y5f'(x + y) = 2x + 2y - 5

Let t=x+yt = x + y. Then, we have f(t)=2t5f'(t) = 2t - 5. So, f(x)=2x5f'(x) = 2x - 5.

Now, integrate f(x)f'(x) to find f(x)f(x): f(x)=(2x5)dx=x25x+Cf(x) = \int (2x - 5) dx = x^2 - 5x + C

We are given the condition f(1)=2f(1) = 2. Use this to find the value of CC: f(1)=(1)25(1)+C=2f(1) = (1)^2 - 5(1) + C = 2 15+C=21 - 5 + C = 2 4+C=2-4 + C = 2 C=6C = 6

Thus, the function is f(x)=x25x+6f(x) = x^2 - 5x + 6. We can factorize f(x)f(x) as f(x)=(x2)(x3)f(x) = (x-2)(x-3). The roots of f(x)f(x) are x=2x=2 and x=3x=3. The vertex of the parabola f(x)f(x) is at x=52(1)=52=2.5x = -\frac{-5}{2(1)} = \frac{5}{2} = 2.5. The minimum value of f(x)f(x) is f(2.5)=(2.5)25(2.5)+6=6.2512.5+6=0.25=14f(2.5) = (2.5)^2 - 5(2.5) + 6 = 6.25 - 12.5 + 6 = -0.25 = -\frac{1}{4}.

Now, we need to find the number of points of non-derivability of g(x)=f(x)14g(x) = \left| \left| f(|x|) \right| - \frac{1}{4} \right|.

Let's break down the function g(x)g(x) step by step:

Step 1: Analyze h(x)=f(x)h(x) = f(|x|) h(x)={f(x)=x25x+6if x0f(x)=(x)25(x)+6=x2+5x+6if x<0h(x) = \begin{cases} f(x) = x^2 - 5x + 6 & \text{if } x \ge 0 \\ f(-x) = (-x)^2 - 5(-x) + 6 = x^2 + 5x + 6 & \text{if } x < 0 \end{cases}

Check differentiability of h(x)h(x) at x=0x=0: h(x)={2x5if x>02x+5if x<0h'(x) = \begin{cases} 2x - 5 & \text{if } x > 0 \\ 2x + 5 & \text{if } x < 0 \end{cases} Left-hand derivative at x=0x=0: h(0)=2(0)+5=5h'(0^-) = 2(0) + 5 = 5 Right-hand derivative at x=0x=0: h(0+)=2(0)5=5h'(0^+) = 2(0) - 5 = -5 Since h(0)h(0+)h'(0^-) \ne h'(0^+), h(x)h(x) is not differentiable at x=0x=0. This is one point of non-derivability.

The roots of h(x)h(x) are: For x0x \ge 0: x25x+6=0    (x2)(x3)=0    x=2,x=3x^2 - 5x + 6 = 0 \implies (x-2)(x-3)=0 \implies x=2, x=3. For x<0x < 0: x2+5x+6=0    (x+2)(x+3)=0    x=2,x=3x^2 + 5x + 6 = 0 \implies (x+2)(x+3)=0 \implies x=-2, x=-3. So, h(x)=0h(x)=0 at x{3,2,2,3}x \in \{-3, -2, 2, 3\}.

Step 2: Analyze k(x)=h(x)=f(x)k(x) = |h(x)| = |f(|x|)| A function u(x)|u(x)| is non-differentiable at points where u(x)u(x) is non-differentiable, or where u(x)=0u(x)=0 and u(x)0u'(x) \ne 0. We already know h(x)h(x) is non-differentiable at x=0x=0. So k(x)k(x) is non-differentiable at x=0x=0. Now check the roots of h(x)h(x): x{3,2,2,3}x \in \{-3, -2, 2, 3\}. At x=2x=2: h(2)=2(2)5=10h'(2) = 2(2)-5 = -1 \ne 0. So x=2x=2 is a non-derivability point. At x=3x=3: h(3)=2(3)5=10h'(3) = 2(3)-5 = 1 \ne 0. So x=3x=3 is a non-derivability point. At x=2x=-2: h(2)=2(2)+5=10h'(-2) = 2(-2)+5 = 1 \ne 0. So x=2x=-2 is a non-derivability point. At x=3x=-3: h(3)=2(3)+5=10h'(-3) = 2(-3)+5 = -1 \ne 0. So x=3x=-3 is a non-derivability point. So far, k(x)k(x) is non-differentiable at x{3,2,0,2,3}x \in \{-3, -2, 0, 2, 3\}. (5 points)

Step 3: Analyze m(x)=k(x)14=f(x)14m(x) = k(x) - \frac{1}{4} = |f(|x|)| - \frac{1}{4} Subtracting a constant does not change the differentiability points. So, m(x)m(x) is non-differentiable at x{3,2,0,2,3}x \in \{-3, -2, 0, 2, 3\}.

Step 4: Analyze g(x)=m(x)=f(x)14g(x) = |m(x)| = \left| \left| f(|x|) \right| - \frac{1}{4} \right| g(x)g(x) is non-differentiable where m(x)m(x) is non-differentiable, or where m(x)=0m(x)=0 and m(x)0m'(x) \ne 0. The points where m(x)m(x) is non-differentiable are x{3,2,0,2,3}x \in \{-3, -2, 0, 2, 3\}. These 5 points are non-derivability points for g(x)g(x).

Now, find the points where m(x)=0m(x)=0: f(x)14=0    f(x)=14|f(|x|)| - \frac{1}{4} = 0 \implies |f(|x|)| = \frac{1}{4}. This implies f(x)=14f(|x|) = \frac{1}{4} or f(x)=14f(|x|) = -\frac{1}{4}.

Case A: f(x)=14f(|x|) = -\frac{1}{4} Let t=xt = |x|. t25t+6=14t^2 - 5t + 6 = -\frac{1}{4} t25t+254=0t^2 - 5t + \frac{25}{4} = 0 (t52)2=0\left(t - \frac{5}{2}\right)^2 = 0 t=52=2.5t = \frac{5}{2} = 2.5. So, x=2.5    x=±2.5|x| = 2.5 \implies x = \pm 2.5.

Let's check m(x)m'(x) at x=±2.5x=\pm 2.5. For x=2.5x=2.5, f(x)=f(2.5)=1/4f(|x|) = f(2.5) = -1/4. Since f(x)f(x) is negative for x(2,3)x \in (2,3), f(x)=(x25x+6)|f(x)| = -(x^2-5x+6). So, for x(2,3)x \in (2,3), m(x)=(x25x+6)1/4=x2+5x61/4m(x) = -(x^2-5x+6) - 1/4 = -x^2+5x-6-1/4. m(x)=2x+5m'(x) = -2x+5. At x=2.5x=2.5, m(2.5)=2(2.5)+5=5+5=0m'(2.5) = -2(2.5)+5 = -5+5 = 0. Since m(2.5)=0m(2.5)=0 and m(2.5)=0m'(2.5)=0, x=2.5x=2.5 is a point where the graph of m(x)m(x) touches the x-axis smoothly. Therefore, m(x)|m(x)| is differentiable at x=2.5x=2.5.

Similarly, for x=2.5x=-2.5, f(x)=f(2.5)=1/4f(|x|) = f(2.5) = -1/4. Since f(x)f(-x) is negative for x(3,2)x \in (-3,-2), f(x)=(x2+5x+6)|f(-x)| = -(x^2+5x+6). So, for x(3,2)x \in (-3,-2), m(x)=(x2+5x+6)1/4=x25x61/4m(x) = -(x^2+5x+6) - 1/4 = -x^2-5x-6-1/4. m(x)=2x5m'(x) = -2x-5. At x=2.5x=-2.5, m(2.5)=2(2.5)5=55=0m'(-2.5) = -2(-2.5)-5 = 5-5 = 0. Since m(2.5)=0m(-2.5)=0 and m(2.5)=0m'(-2.5)=0, x=2.5x=-2.5 is also a point where g(x)g(x) is differentiable. So, x=±2.5x=\pm 2.5 are NOT non-derivability points.

Case B: f(x)=14f(|x|) = \frac{1}{4} Let t=xt = |x|. t25t+6=14t^2 - 5t + 6 = \frac{1}{4} t25t+234=0t^2 - 5t + \frac{23}{4} = 0 The discriminant is Δ=(5)24(1)(234)=2523=2\Delta = (-5)^2 - 4(1)\left(\frac{23}{4}\right) = 25 - 23 = 2. The roots are t=5±22t = \frac{5 \pm \sqrt{2}}{2}. So, x=5±22|x| = \frac{5 \pm \sqrt{2}}{2}. This gives four values for xx: x1=5+22x_1 = \frac{5 + \sqrt{2}}{2} x2=5+22x_2 = -\frac{5 + \sqrt{2}}{2} x3=522x_3 = \frac{5 - \sqrt{2}}{2} x4=522x_4 = -\frac{5 - \sqrt{2}}{2}

Let's check m(x)m'(x) at these points. At these points, f(x)=1/4>0f(|x|) = 1/4 > 0. So, f(x)=f(x)|f(|x|)| = f(|x|). Thus, m(x)=f(x)1/4m(x) = f(|x|) - 1/4. If x>0x > 0, m(x)=f(x)1/4=x25x+61/4m(x) = f(x) - 1/4 = x^2 - 5x + 6 - 1/4. m(x)=2x5m'(x) = 2x - 5. For x1=5+22x_1 = \frac{5 + \sqrt{2}}{2}: m(x1)=2(5+22)5=5+25=20m'(x_1) = 2\left(\frac{5 + \sqrt{2}}{2}\right) - 5 = 5 + \sqrt{2} - 5 = \sqrt{2} \ne 0. So x1x_1 is a non-derivability point. For x3=522x_3 = \frac{5 - \sqrt{2}}{2}: m(x3)=2(522)5=525=20m'(x_3) = 2\left(\frac{5 - \sqrt{2}}{2}\right) - 5 = 5 - \sqrt{2} - 5 = -\sqrt{2} \ne 0. So x3x_3 is a non-derivability point.

If x<0x < 0, m(x)=f(x)1/4=x2+5x+61/4m(x) = f(-x) - 1/4 = x^2 + 5x + 6 - 1/4. m(x)=2x+5m'(x) = 2x + 5. For x2=5+22x_2 = -\frac{5 + \sqrt{2}}{2}: m(x2)=2(5+22)+5=52+5=20m'(x_2) = 2\left(-\frac{5 + \sqrt{2}}{2}\right) + 5 = -5 - \sqrt{2} + 5 = -\sqrt{2} \ne 0. So x2x_2 is a non-derivability point. For x4=522x_4 = -\frac{5 - \sqrt{2}}{2}: m(x4)=2(522)+5=5+2+5=20m'(x_4) = 2\left(-\frac{5 - \sqrt{2}}{2}\right) + 5 = -5 + \sqrt{2} + 5 = \sqrt{2} \ne 0. So x4x_4 is a non-derivability point.

These 4 points (x=±5±22x = \pm \frac{5 \pm \sqrt{2}}{2}) are additional non-derivability points.

Total number of non-derivability points for g(x)g(x):

  1. From m(x)m(x) being non-differentiable: x{3,2,0,2,3}x \in \{-3, -2, 0, 2, 3\} (5 points)
  2. From m(x)=0m(x)=0 and m(x)0m'(x) \ne 0: x{±5+22,±522}x \in \left\{\pm \frac{5 + \sqrt{2}}{2}, \pm \frac{5 - \sqrt{2}}{2}\right\} (4 points)

All these points are distinct. 21.414\sqrt{2} \approx 1.414. 5+226.4142=3.207\frac{5+\sqrt{2}}{2} \approx \frac{6.414}{2} = 3.207. 5223.5862=1.793\frac{5-\sqrt{2}}{2} \approx \frac{3.586}{2} = 1.793. These values are not 0,±2,±30, \pm 2, \pm 3. So, the total number of points of non-derivability is 5+4=95 + 4 = 9.