Question
Question: Find the value of p if in the given data. The mean is 54. Class Interval| 0-20| 20-40| 40-60| 60...
Find the value of p if in the given data. The mean is 54.
Class Interval | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 |
---|---|---|---|---|---|
Frequency | 7 | p | 10 | 9 | 13 |
Explanation
Solution
We will first find the classmark which will be a representative of the whole group. We know the formula of the mean. We will make a new table to calculate the mean from ourselves and then we will equate it to the given value to get the value of p.
Complete step-by-step solution:
We have this data,
Class Interval | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 |
---|---|---|---|---|---|
Frequency | 7 | p | 10 | 9 | 13 |
We will calculate Class Mark= 2upper class limit +lower class limit
If I want to calculate Class Mark of interval 0-20 I will upper limit=20 and lower limit=0
I will get class mark =10
We know the formula of mean, given by,
⇒xˉ=∑fi∑fixi
We will make a new table having columns Class mark(xi), fixi
Class Interval | Class Mark (xi) | Frequency (fi) | fixi |
---|---|---|---|
0-20 | 10 | 7 | 70 |
20-40 | 30 | p | 30p |
40-60 | 50 | 10 | 500 |
60-80 | 70 | 9 | 630 |
80-100 | 90 | 13 | 1170 |
From the table we will calculate ∑fixi and ∑fi
& \Rightarrow \sum{{{f}_{i}}{{x}_{i}}}=70+30p+500+630+1170 \\\ & \Rightarrow \sum{{{f}_{i}}{{x}_{i}}}=2370+30p \\\ \end{aligned}$$ $$\begin{aligned} & \Rightarrow \sum{{{f}_{i}}}=7+p+10+9+13 \\\ & \Rightarrow \sum{{{f}_{i}}}=39+p \\\ \end{aligned}$$ We will put the value in the formula $\begin{aligned} & \Rightarrow \bar{x}=\dfrac{\sum{{{f}_{i}}{{x}_{i}}}}{\sum{{{f}_{i}}}} \\\ & \Rightarrow \bar{x}=\dfrac{2370+30p}{39+p} \\\ & \Rightarrow 54=\dfrac{2370+30p}{39+p} \\\ & \Rightarrow 54(39+p)=2370+30p \\\ & \Rightarrow 2106+54p=2370+30p \\\ & \Rightarrow 24p=264 \\\ & \Rightarrow p=11 \\\ \end{aligned}$ **Note:** It is mandatory to convert the class interval to class mark, then only we can calculate the value of $$\bar{x}$$ . Many times, we assume that if mean( $$\bar{x}$$ ) is given in the question it means average, then we try to apply this formula $$\dfrac{\sum{{{f}_{i}}}}{\text{Number of elements}}$$ and equate to given value. Using this approach will give us the wrong answer. It is mandatory to apply this formula $$\Rightarrow \bar{x}=\dfrac{\sum{{{f}_{i}}{{x}_{i}}}}{\sum{{{f}_{i}}}}$$.