Solveeit Logo

Question

Question: Find the value of \(p\) and \(q\) for which \[ f\left( x \right)=\left\\{\begin{array}{ll} ...

Find the value of pp and qq for which

f\left( x \right)=\left\\{\begin{array}{ll} \dfrac{1-{{\sin }^{3}}x}{3{{\cos }^{2}}x} :if\text{ }x<\dfrac{\pi }{2} \\\ p :if\text{ }x=\dfrac{\pi }{2} \\\ \dfrac{q(1-\sin x)}{{{(\pi -2x)}^{2}}} :if\text{ }x>\dfrac{\pi }{2} \\\ \end{array} \right. $$ is continuous at $x=\dfrac{\pi }{2}$.
Explanation

Solution

Hint: We know that f(x)f(x) is continuous then LHL=RHL=f(π2)LHL=RHL=f(\dfrac{\pi }{2}). So take LHL and RHL and simplify it. Then after solving equate it. You will get the values of pp and qq.

“Complete step-by-step answer:”

So first of all, a limit is a value toward which an expression converges as one or more variables approach certain values. Limits are important in calculus and analysis.
Consider the limit of the expression 2x+32x+3 as xx approaches 00. It is not difficult to see that this limit is 33, because we can assign the value 00 to the variable xx and perform the calculation directly.
A limit is a value that a function (or sequence) "approaches" as the input (or index) "approaches" some value.
Limits are essential to calculus (and mathematical analysis in general) and are used to define continuity, derivatives, and integrals.
The concept of a limit of a sequence is further generalized to the concept of a limit of a topological net and is closely related to limit and direct limit in category theory.

A function f(x)f(x) is said to be continuous at x=ax=a if limxaf(x)=limxa+f(x)=f(a)\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)=f(a)
i.e. L.H.L.== R.H.L=f(a)=f(a) = value of the function at a i.e.limxaf(x)=f(a)\underset{x\to a}{\mathop{\lim }}\,f(x)=f(a)
If f(x)f(x) it is not continuous at x=ax=a , we say thatf(x)f(x) it is discontinuous x=ax=a.

But here it is given that f(x)f(x) is continuous at x=π2x=\dfrac{\pi }{2} .
Now letf(x)1=limxπ21sin3x3cos2xf{{(x)}_{1}}=\underset{x\to {{\dfrac{\pi }{2}}^{-}}}{\mathop{\lim }}\,\dfrac{1-{{\sin }^{3}}x}{3{{\cos }^{2}}x},f(x)2=pf{{(x)}_{2}}=p and f(x)3=limxπ2+q(1sinx)(π2x)2f{{(x)}_{3}}=\underset{x\to {{\dfrac{\pi }{2}}^{+}}}{\mathop{\lim }}\,\dfrac{q(1-\sin x)}{{{(\pi -2x)}^{2}}}.
We know xx is continuous at π2\dfrac{\pi }{2}.
Here f(x)1=f(x)2=f(x)3f{{(x)}_{1}}=f{{(x)}_{2}}=f{{(x)}_{3}}.
So for LHL, here we have taken the limit for xx tending to π2{{\dfrac{\pi }{2}}^{-}}.
So now taking functionf(x)1=limxπ21sin3x3cos2xf{{(x)}_{1}}=\underset{x\to {{\dfrac{\pi }{2}}^{-}}}{\mathop{\lim }}\,\dfrac{1-{{\sin }^{3}}x}{3{{\cos }^{2}}x}.
f(x)1=limxπ21sin3x3cos2xf{{(x)}_{1}}=\underset{x\to {{\dfrac{\pi }{2}}^{-}}}{\mathop{\lim }}\,\dfrac{1-{{\sin }^{3}}x}{3{{\cos }^{2}}x}
f(x)1=limxπ213sin3x3cos2xf{{(x)}_{1}}=\underset{x\to {{\dfrac{\pi }{2}}^{-}}}{\mathop{\lim }}\,\dfrac{{{1}^{3}}-{{\sin }^{3}}x}{3{{\cos }^{2}}x}
Here we know the identity that a3b3=(ab)(a2+b2+ab){{a}^{3}}-{{b}^{3}}=(a-b)({{a}^{2}}+{{b}^{2}}+ab).
Using the above identity we get,
f(x)1=limxπ2(1sinx)(1+sin2x+sinx)3cos2xf{{(x)}_{1}}=\underset{x\to {{\dfrac{\pi }{2}}^{-}}}{\mathop{\lim }}\,\dfrac{(1-\sin x)(1+{{\sin }^{2}}x+\sin x)}{3{{\cos }^{2}}x}
Also, we know, cos2x=1sin2x=(1+sinx)(1sinx){{\cos }^{2}}x=1-{{\sin }^{2}}x=(1+\sin x)(1-\sin x).
f(x)1=limxπ2(1sinx)(1+sin2x+sinx)3(1+sinx)(1sinx)=limxπ2(1+sin2x+sinx)3(1+sinx)f{{(x)}_{1}}=\underset{x\to {{\dfrac{\pi }{2}}^{-}}}{\mathop{\lim }}\,\dfrac{(1-\sin x)(1+{{\sin }^{2}}x+\sin x)}{3(1+\sin x)(1-\sin x)}=\underset{x\to {{\dfrac{\pi }{2}}^{-}}}{\mathop{\lim }}\,\dfrac{(1+{{\sin }^{2}}x+\sin x)}{3(1+\sin x)}
Put x=π2hx=\dfrac{\pi }{2}-h, when x=π2x=\dfrac{\pi }{2} and h=0h=0.
So, x=π2x=\dfrac{\pi }{2}.
f(x)1=limh0(1+sin2(π2h)+sin(π2h))3(1+sin(π2h))=limh0(1+cos2(h)+cos(h))3(1+cos(h))=1+1+13(2)=12f{{(x)}_{1}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{(1+{{\sin }^{2}}(\dfrac{\pi }{2}-h)+\sin (\dfrac{\pi }{2}-h))}{3(1+\sin (\dfrac{\pi }{2}-h))}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{(1+{{\cos }^{2}}(h)+\cos (h))}{3(1+\cos (h))}=\dfrac{1+1+1}{3(2)}=\dfrac{1}{2}
So for RHL, here we have taken the limit for xx tending to π2+{{\dfrac{\pi }{2}}^{+}}.
f(x)3=limxπ2+q(1sinx)(π2x)2f{{(x)}_{3}}=\underset{x\to {{\dfrac{\pi }{2}}^{+}}}{\mathop{\lim }}\,\dfrac{q(1-\sin x)}{{{(\pi -2x)}^{2}}}
Put x=π2+hx=\dfrac{\pi }{2}+h, so x=π2x=\dfrac{\pi }{2} and h=0h=0.
f(x)3=limh0q(1sin(π2+h))(π2(π2+h))2f{{(x)}_{3}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{q(1-\sin (\dfrac{\pi }{2}+h))}{{{(\pi -2(\dfrac{\pi }{2}+h))}^{2}}}
f(x)3=limh0q(1cosh)4h2=limh0qsin2(h2)2h2f{{(x)}_{3}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{q(1-\cosh )}{4{{h}^{2}}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{q{{\sin }^{2}}\left( \dfrac{h}{2} \right)}{2{{h}^{2}}} …… (1cosx=2sin2x21-\cos x=2{{\sin }^{2}}\dfrac{x}{2})
Multiplying dividing denominator by 4 and arranging it such that limh0\underset{h\to 0}{\mathop{\lim }} sinhh\dfrac{sinh}{h}=11
Applying h=0h=0 we get,
f(x)3=limh0q(1cosh)4h2=q8limh0(sin(h2)h2)2=q8f{{(x)}_{3}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{q(1-\cosh )}{4{{h}^{2}}}=\dfrac{q}{8}\underset{h\to 0}{\mathop{\lim }}\,{{\left( \dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}} \right)}^{2}}=\dfrac{q}{8}
Also at x=π2x=\dfrac{\pi }{2}, f(x)2=pf{{(x)}_{2}}=p.
So we have been given that f(x)f(x) is continuous x=π2x=\dfrac{\pi }{2}.
Here we get,
LHL=RHL=f(π2)LHL=RHL=f(\dfrac{\pi }{2}).
So we get 12=q8=p\dfrac{1}{2}=\dfrac{q}{8}=p
Here, equating we get,
12=q8\dfrac{1}{2}=\dfrac{q}{8}
q=4q=4
and 12=p\dfrac{1}{2}=p.
So we get the values p=12p=\dfrac{1}{2} and q=4q=4.

Note: Students should know what RHL and LHL and are thorough with the concept .If the limit is continuous then LHL=RHL=f(π2)LHL=RHL=f(\dfrac{\pi }{2}). Students should remember trigonometric identities and formula 1cosx=2sin2x21-\cos x=2{{\sin }^{2}}\dfrac{x}{2} and important limit values i.e limh0\underset{h\to 0}{\mathop{\lim }} sinhh\dfrac{sinh}{h}=11 for solving these types of questions.