Solveeit Logo

Question

Question: Find the value of other five trigonometric ratios: \(\tan x = - \dfrac{5}{{12}}\) , x lies in the ...

Find the value of other five trigonometric ratios:
tanx=512\tan x = - \dfrac{5}{{12}} , x lies in the second quadrant.

Explanation

Solution

Given that x lies in the second quadrant. Now if x lies in the 2nd quadrant, only sinx\sin x and cosecxcosecx is positive.
Also, note the following important formulae:
cosx=1secx\cos x = \dfrac{1}{{\sec x}} , sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}} , tanx=1cotx\tan x = \dfrac{1}{{\cot x}}
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
cosec2xcot2x=1{\operatorname{cosec} ^2}x - {\cot ^2}x = 1
Now, the value of tanxtanx is given. Therefore find the value of the other five trigonometric ratios with the help of aforementioned formulae.

Complete step-by-step answer:
Given, tanx=512\tan x = - \dfrac{5}{{12}}
Therefore cotx=1tanx=125\cot x = \dfrac{1}{{\tan x}} = - \dfrac{{12}}{5}
sec2xtan2x=1\because {\sec ^2}x - {\tan ^2}x = 1
sec2x=1+tan2x\Rightarrow {\sec ^2}x = 1 + {\tan ^2}x
Taking square root on both the sides we get,
secx=±1+tan2x\Rightarrow \sec x = \pm \sqrt {1 + {{\tan }^2}x}
On substituting the value of tanxtanx we get,
secx=±1+(512)2=±1+25144\Rightarrow \sec x = \pm \sqrt {1 + {{\left( { - \dfrac{5}{{12}}} \right)}^2}} = \pm \sqrt {1 + \dfrac{{25}}{{144}}}
As, x lies in the second quadrant, so the value of secxsecx is negative,
secx=1312\Rightarrow \sec x = - \dfrac{{13}}{{12}}
Therefore cosx=1secx=1213\cos x = \dfrac{1}{{\sec x}} = - \dfrac{{12}}{{13}}
Now,
tanx=sinxcosx=512\tan x = \dfrac{{\sin x}}{{\cos x}} = - \dfrac{5}{{12}}
sinx=cosx×(512)\Rightarrow \sin x = \cos x \times \left( { - \dfrac{5}{{12}}} \right)
On substituting the value of cosxcosx we get,
sinx=(1213)×(512)=513\Rightarrow \sin x = \left( { - \dfrac{{1{2}}}{{13}}} \right) \times \left( { - \dfrac{5}{{1{2}}}} \right) = \dfrac{5}{{13}}
Therefore, cosecx=1sinx=135\operatorname{cosecx} = \dfrac{1}{{\sin x}} = \dfrac{{13}}{5}
Hence when tanx=512\tan x = - \dfrac{5}{{12}} and x lies in second quadrant, the other five trigonometric ratios are :
cotx=125co\operatorname{t} x = - \dfrac{{12}}{5} , sinx=513\sin x = \dfrac{5}{{13}} , cosx=1213\cos x = - \dfrac{{12}}{{13}}, secx=1312\sec x = - \dfrac{{13}}{{12}} and cosecx=135\operatorname{cosecx} = \dfrac{{13}}{5}

Note: Note the following important formulae:
1.cosx=1secx\cos x = \dfrac{1}{{\sec x}} , sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}} , tanx=1cotx\tan x = \dfrac{1}{{\cot x}}
2.sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
3.sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
4.cosec2xcot2x=1{\operatorname{cosec} ^2}x - {\cot ^2}x = 1
5.sin(x)=sinx\sin ( - x) = - \sin x
6.cos(x)=cosx\cos ( - x) = \cos x
7.tan(x)=tanx\tan ( - x) = - \tan x
8.sin(2nπ±x)=sinx , period 2π or 360\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
9.cos(2nπ±x)=cosx , period 2π or 360\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
10.tan(nπ±x)=tanx , period π or 180\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }
Sign convention: