Solveeit Logo

Question

Question: Find the value of other five trigonometric ratios: \(\sec x = \dfrac{{13}}{5}\) , x lies in the fo...

Find the value of other five trigonometric ratios:
secx=135\sec x = \dfrac{{13}}{5} , x lies in the fourth quadrant.

Explanation

Solution

Given that x lies in fourth quadrant. Now if x lies in the fourth quadrant, only cosx\cos x and secx\sec x is positive.
Also, note the following important formulae:
cosx=1secx\cos x = \dfrac{1}{{\sec x}} , sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}} , tanx=1cotx\tan x = \dfrac{1}{{\cot x}}
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
cosec2xcot2x=1{\operatorname{cosec} ^2}x - {\cot ^2}x = 1
Now, the value of secx\sec x is given. Therefore find the value of the other five trigonometric ratios with the help of aforementioned formulae.

Complete step-by-step answer:
Given, secx=135\sec x = \dfrac{{13}}{5}
Therefore cosx=1secx=513\cos x = \dfrac{1}{{\sec x}} = \dfrac{5}{{13}}
Now,
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
sin2x=1cos2x\Rightarrow {\sin ^2}x = 1 - {\cos ^2}x
Taking square root we get,
sinx=±1cos2x\Rightarrow \sin x = \pm \sqrt {1 - {{\cos }^2}x}
On substituting the value of cosx\cos x we get,
sinx=±1(513)2\Rightarrow \sin x = \pm \sqrt {1 - {{\left( {\dfrac{5}{{13}}} \right)}^2}}
On simplification we get,
sinx=±125169=±144169\Rightarrow \sin x = \pm \sqrt {1 - \dfrac{{25}}{{169}}} = \pm \sqrt {\dfrac{{144}}{{169}}}
As, x lies in the fourth quadrant, so value of sinx\sin x will be negative,
sinx=1213\Rightarrow \sin x = - \dfrac{{12}}{{13}}{\text{, }}
Therefore, cosecx=1sinx=1312\operatorname{cosecx} = \dfrac{1}{{\sin x}} = - \dfrac{{13}}{{12}}
Again,
sec2xtan2x=1\because {\sec ^2}x - {\tan ^2}x = 1
tan2x=sec2x1\Rightarrow {\tan ^2}x = {\sec ^2}x - 1
On taking square root we get,
tanx=±sec2x1\Rightarrow \tan x = \pm \sqrt {{{\sec }^2}x - 1}
On substituting the value of secx\sec x we get,
tanx=±(135)21\Rightarrow \tan x = \pm \sqrt {{{\left( {\dfrac{{13}}{5}} \right)}^2} - 1}
On simplification we get,
tanx=±169251=±14425\Rightarrow \tan x = \pm \sqrt {\dfrac{{169}}{{25}} - 1} = \pm \sqrt {\dfrac{{144}}{{25}}}
As, x lies in the fourth quadrant, so value of tanx\tan x will be negative,
tanx=125 \Rightarrow \tan x = - \dfrac{{12}}{5}{\text{ }}
Therefore cotx=1tanx=512\cot x = \dfrac{1}{{\tan x}} = - \dfrac{5}{{12}}
Hence, when secx=135\sec x = \dfrac{{13}}{5} and x lies in fourth quadrant, the other five trigonometric ratios are :
cosx=513\cos x = \dfrac{5}{{13}}, sinx=1213\sin x = - \dfrac{{12}}{{13}} , cosecx=1312\operatorname{cosecx} = - \dfrac{{13}}{{12}}, tanx=125\tan x = - \dfrac{{12}}{5}and cotx=512\cot x = - \dfrac{5}{{12}}

Note: Note the following important formulae:
1.cosx=1secx\cos x = \dfrac{1}{{\sec x}} , sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}} , tanx=1cotx\tan x = \dfrac{1}{{\cot x}}
2.sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
3.sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
4.cosec2xcot2x=1{\operatorname{cosec} ^2}x - {\cot ^2}x = 1
5.sin(x)=sinx\sin ( - x) = - \sin x
6.cos(x)=cosx\cos ( - x) = \cos x
7.tan(x)=tanx\tan ( - x) = - \tan x
8.sin(2nπ±x)=sinx , period 2π or 360\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
9.cos(2nπ±x)=cosx , period 2π or 360\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
10.tan(nπ±x)=tanx , period π or 180\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }
Sign convention: