Question
Question: Find the value of other five trigonometric ratios: \(\sec x = \dfrac{{13}}{5}\) , x lies in the fo...
Find the value of other five trigonometric ratios:
secx=513 , x lies in the fourth quadrant.
Solution
Given that x lies in fourth quadrant. Now if x lies in the fourth quadrant, only cosx and secx is positive.
Also, note the following important formulae:
cosx=secx1 , sinx=cosecx1 , tanx=cotx1
sin2x+cos2x=1
sec2x−tan2x=1
cosec2x−cot2x=1
Now, the value of secx is given. Therefore find the value of the other five trigonometric ratios with the help of aforementioned formulae.
Complete step-by-step answer:
Given, secx=513
Therefore cosx=secx1=135
Now,
sin2x+cos2x=1
⇒sin2x=1−cos2x
Taking square root we get,
⇒sinx=±1−cos2x
On substituting the value of cosx we get,
⇒sinx=±1−(135)2
On simplification we get,
⇒sinx=±1−16925=±169144
As, x lies in the fourth quadrant, so value of sinx will be negative,
⇒sinx=−1312,
Therefore, cosecx=sinx1=−1213
Again,
∵sec2x−tan2x=1
⇒tan2x=sec2x−1
On taking square root we get,
⇒tanx=±sec2x−1
On substituting the value of secx we get,
⇒tanx=±(513)2−1
On simplification we get,
⇒tanx=±25169−1=±25144
As, x lies in the fourth quadrant, so value of tanx will be negative,
⇒tanx=−512
Therefore cotx=tanx1=−125
Hence, when secx=513 and x lies in fourth quadrant, the other five trigonometric ratios are :
cosx=135, sinx=−1312 , cosecx=−1213, tanx=−512and cotx=−125
Note: Note the following important formulae:
1.cosx=secx1 , sinx=cosecx1 , tanx=cotx1
2.sin2x+cos2x=1
3.sec2x−tan2x=1
4.cosec2x−cot2x=1
5.sin(−x)=−sinx
6.cos(−x)=cosx
7.tan(−x)=−tanx
8.sin(2nπ±x)=sinx , period 2π or 360∘
9.cos(2nπ±x)=cosx , period 2π or 360∘
10.tan(nπ±x)=tanx , period π or 180∘
Sign convention: