Question
Question: Find the value of other five trigonometric ratios: \(\cot x = \dfrac{3}{4}\) , x lies in the third...
Find the value of other five trigonometric ratios:
cotx=43 , x lies in the third quadrant.
Solution
Given that x lies in third quadrant. Now if x lies in the third quadrant, only tanx and cotx is positive.
Also, note the following important formulae:
cosx=secx1 , sinx=cosecx1 , tanx=cotx1
sin2x+cos2x=1
sec2x−tan2x=1
cosec2x−cot2x=1
Now, the value of cotx is given. Therefore find the value of the other five trigonometric ratios with the help of before mentioned formulae.
Complete step-by-step answer:
Given, cotx=43
Therefore tanx=cotx1=34
∵sec2x−tan2x=1, we get,
⇒sec2x=1+tan2x
On taking square root we get,
⇒secx=±1+tan2x
On substituting the value of tanxwe get,
⇒secx=±1+(34)2
On simplification we get,
⇒secx=−35
Here as, x lies in the third Quadrant, therefore secx is negative.
Therefore cosx=secx1=−53
Again,
sin2x+cos2x=1
⇒sin2x=1−cos2x
On taking square root we get,
⇒sinx=±1−cos2x
On substituting the value of cosxwe get,
⇒sinx=±1−(−53)2
On solving we get,
⇒sinx=±1−259=±2516
On simplification we get,
⇒sinx=−54
Here as, x lies in the third quadrant so the value ofsinx will be negative.
Therefore, cosecx=sinx1=−45
Hence when cotx=43 , and x lies in third quadrant, the other five trigonometric ratios are :
tanx=34, sinx=−54 , cosx=−53, secx=−35 and cosecx=−45
Note: Note the following important formulae:
1.cosx=secx1 , sinx=cosecx1 , tanx=cotx1
2.sin2x+cos2x=1
3.sec2x−tan2x=1
4.cosec2x−cot2x=1
5.sin(−x)=−sinx
6.cos(−x)=cosx
7.tan(−x)=−tanx
8.sin(2nπ±x)=sinx , period 2π or 360∘
9.cos(2nπ±x)=cosx , period 2π or 360∘
10.tan(nπ±x)=tanx , period π or 180∘
Sign convention: