Solveeit Logo

Question

Question: Find the value of other five trigonometric ratios: \(\cot x = \dfrac{3}{4}\) , x lies in the third...

Find the value of other five trigonometric ratios:
cotx=34\cot x = \dfrac{3}{4} , x lies in the third quadrant.

Explanation

Solution

Given that x lies in third quadrant. Now if x lies in the third quadrant, only tanx\tan x and cotx\cot x is positive.
Also, note the following important formulae:
cosx=1secx\cos x = \dfrac{1}{{\sec x}} , sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}} , tanx=1cotx\tan x = \dfrac{1}{{\cot x}}
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
cosec2xcot2x=1{\operatorname{cosec} ^2}x - {\cot ^2}x = 1
Now, the value of cotx\cot x is given. Therefore find the value of the other five trigonometric ratios with the help of before mentioned formulae.

Complete step-by-step answer:
Given, cotx=34\cot x = \dfrac{3}{4}
Therefore tanx=1cotx=43\tan x = \dfrac{1}{{\cot x}} = \dfrac{4}{3}
sec2xtan2x=1\because {\sec ^2}x - {\tan ^2}x = 1, we get,
sec2x=1+tan2x\Rightarrow {\sec ^2}x = 1 + {\tan ^2}x
On taking square root we get,
secx=±1+tan2x\Rightarrow \sec x = \pm \sqrt {1 + {{\tan }^2}x}
On substituting the value of tanx\tan xwe get,
secx=±1+(43)2\Rightarrow \sec x = \pm \sqrt {1 + {{\left( {\dfrac{4}{3}} \right)}^2}}
On simplification we get,
secx=53\Rightarrow \sec x = - \dfrac{5}{3}
Here as, x lies in the third Quadrant, therefore secx\sec x is negative.
Therefore cosx=1secx=35\cos x = \dfrac{1}{{\sec x}} = - \dfrac{3}{5}
Again,
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
sin2x=1cos2x\Rightarrow {\sin ^2}x = 1 - {\cos ^2}x
On taking square root we get,
sinx=±1cos2x\Rightarrow \sin x = \pm \sqrt {1 - {{\cos }^2}x}
On substituting the value of cosx\cos xwe get,
sinx=±1(35)2\Rightarrow \sin x = \pm \sqrt {1 - {{\left( { - \dfrac{3}{5}} \right)}^2}}
On solving we get,
sinx=±1925=±1625\Rightarrow \sin x = \pm \sqrt {1 - \dfrac{9}{{25}}} = \pm \sqrt {\dfrac{{16}}{{25}}}
On simplification we get,
sinx=45\Rightarrow \sin x = - \dfrac{4}{5}
Here as, x lies in the third quadrant so the value of  sinx\;\sin x will be negative.
Therefore, cosecx=1sinx=54\operatorname{cosecx} = \dfrac{1}{{\sin x}} = - \dfrac{5}{4}
Hence when cotx=34\cot x = \dfrac{3}{4} , and x lies in third quadrant, the other five trigonometric ratios are :
tanx=43\tan x = \dfrac{4}{3}, sinx=45\sin x = - \dfrac{4}{5} , cosx=35\cos x = - \dfrac{3}{5}, secx=53\sec x = - \dfrac{5}{3} and cosecx=54\operatorname{cosecx} = - \dfrac{5}{4}

Note: Note the following important formulae:
1.cosx=1secx\cos x = \dfrac{1}{{\sec x}} , sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}} , tanx=1cotx\tan x = \dfrac{1}{{\cot x}}
2.sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
3.sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
4.cosec2xcot2x=1{\operatorname{cosec} ^2}x - {\cot ^2}x = 1
5.sin(x)=sinx\sin ( - x) = - \sin x
6.cos(x)=cosx\cos ( - x) = \cos x
7.tan(x)=tanx\tan ( - x) = - \tan x
8.sin(2nπ±x)=sinx , period 2π or 360\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
9.cos(2nπ±x)=cosx , period 2π or 360\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
10.tan(nπ±x)=tanx , period π or 180\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }
Sign convention: