Solveeit Logo

Question

Question: Find the value of \(\operatorname{cosec} ( - {1410^ \circ })\)...

Find the value of cosec(1410)\operatorname{cosec} ( - {1410^ \circ })

Explanation

Solution

We know that cosec(θ)=cosecθ{\text{cosec}}\left( { - \theta } \right) = - {\text{cosec}}\theta
Again, the function y=cosecxy = \cos ecx has a period of 2π2\pi or 360360^\circ , i.e. the value of cosecx  \cos ecx\; repeats after an interval of 2π2\pi or 360360^\circ .
Therefore write 14101410^\circ as (4×2π30)(4 \times 2\pi - 30^\circ ) and proceed.

Complete step-by-step answer:
We know that the function y=cosecxy = \cos ecx has a period of 2π2\pi or 360360^\circ , i.e. the value of cosecx  \cos ecx\; repeats after an interval of 2π2\pi or 360360^\circ .

Therefore,
cosec(1410)\operatorname{cosec} ( - {1410^ \circ })
Using, [cosec(θ)=cosecθ]\left[ {{\text{cosec}}\left( { - \theta } \right) = - {\text{cosec}}\theta } \right], we get,
=cosec(1410) = - \operatorname{cosec} ({1410^ \circ }){\text{ }}
We can write the above statement as,
=cosec((4×360)30)= - \operatorname{cosec} \left( {(4 \times {{360}^ \circ }) - {{30}^ \circ }} \right)
Since 1410{\text{141}}{0^ \circ } lies in the fourth quadrant, therefore is cosec1410{\text{cosec141}}{0^ \circ } negative
=(cosec30) = - \left( { - \operatorname{cosec} {{30}^ \circ }} \right){\text{ }}
=cosec30= \operatorname{cosec} {30^ \circ }
As, cosec(30)=2\operatorname{cosec} ({30^ \circ }) = 2, we get,
=2= 2
Hence, the value of cosec(1410)\operatorname{cosec} ( - {1410^ \circ }) is 2.

Note: Note the following important formulae:
1.cosx=1secx\cos x = \dfrac{1}{{\sec x}} , sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}} , tanx=1cotx\tan x = \dfrac{1}{{\cot x}}
2.sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
3.sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
4.cosec2xcot2x=1{\operatorname{cosec} ^2}x - {\cot ^2}x = 1
5.sin(x)=sinx\sin ( - x) = - \sin x
6.cos(x)=cosx\cos ( - x) = \cos x
7.tan(x)=tanx\tan ( - x) = - \tan x
8.sin(2nπ±x)=sinx , period 2π or 360\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
9.cos(2nπ±x)=cosx , period 2π or 360\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
10.tan(nπ±x)=tanx , period π or 180\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }
Sign convention:

Also, the trigonometric ratios of the standard angles are given by

| 00^\circ | 3030^\circ | 4545^\circ | 6060^\circ | 9090^\circ
---|---|---|---|---|---
Sinx\operatorname{Sin} x| 0| 12\dfrac{1}{2} | 12\dfrac{1}{{\sqrt 2 }} | 32\dfrac{{\sqrt 3 }}{2} | 1
cosx\cos x| 1| 32\dfrac{{\sqrt 3 }}{2}| 12\dfrac{1}{{\sqrt 2 }}| 12\dfrac{1}{2}| 0
tanx\tan x| 0| 13\dfrac{1}{{\sqrt 3 }} | 1| 3\sqrt 3 | Undefined
cotxcotx| undefined| 3\sqrt 3 | 1| 13\dfrac{1}{{\sqrt 3 }}| 0
cosecx  \cos ecx\;| undefined| 2| 2\sqrt 2 | 23\dfrac{2}{{\sqrt 3 }}| 1
Secx\operatorname{Sec} x| 1| 23\dfrac{2}{{\sqrt 3 }}| 2\sqrt 2 | 2| Undefined