Question
Question: Find the value of \(\operatorname{cosec} ( - {1410^ \circ })\)...
Find the value of cosec(−1410∘)
Solution
We know that cosec(−θ)=−cosecθ
Again, the function y=cosecx has a period of 2π or 360∘, i.e. the value of cosecx repeats after an interval of 2π or 360∘.
Therefore write 1410∘ as (4×2π−30∘) and proceed.
Complete step-by-step answer:
We know that the function y=cosecx has a period of 2π or 360∘, i.e. the value of cosecx repeats after an interval of 2π or 360∘.
Therefore,
cosec(−1410∘)
Using, [cosec(−θ)=−cosecθ], we get,
=−cosec(1410∘)
We can write the above statement as,
=−cosec((4×360∘)−30∘)
Since 1410∘ lies in the fourth quadrant, therefore is cosec1410∘ negative
=−(−cosec30∘)
=cosec30∘
As, cosec(30∘)=2, we get,
=2
Hence, the value of cosec(−1410∘) is 2.
Note: Note the following important formulae:
1.cosx=secx1 , sinx=cosecx1 , tanx=cotx1
2.sin2x+cos2x=1
3.sec2x−tan2x=1
4.cosec2x−cot2x=1
5.sin(−x)=−sinx
6.cos(−x)=cosx
7.tan(−x)=−tanx
8.sin(2nπ±x)=sinx , period 2π or 360∘
9.cos(2nπ±x)=cosx , period 2π or 360∘
10.tan(nπ±x)=tanx , period π or 180∘
Sign convention:
Also, the trigonometric ratios of the standard angles are given by
| 0∘| 30∘| 45∘| 60∘| 90∘
---|---|---|---|---|---
Sinx| 0| 21 | 21 | 23 | 1
cosx| 1| 23| 21| 21| 0
tanx| 0| 31 | 1| 3| Undefined
cotx| undefined| 3| 1| 31| 0
cosecx| undefined| 2| 2| 32| 1
Secx| 1| 32| 2| 2| Undefined