Solveeit Logo

Question

Mathematics Question on geometric progression

Find the value of n so that an+1+bn+1an+bn\frac{a^{n+1}+b^{n+1}}{a^n+b^n }n may be the geometric mean between a and b.

Answer

G. M. of a and b is √ab.
By the given condition, an+1+bn+1an+bn=ab\frac{a^{n+1}+b^{n+1}}{a^n+b^n }=\sqrt{ab}
Squaring both sides, we obtain
(an+1+bn+1)2(an+bn)2=ab\frac{(a^{n+1}+b^{n+1})^2}{(a^n+b^n)^2}=\sqrt{ab}
⇒ a2n+2 + 2an+1 bn+1 + b2n+2 = (ab) (a2n + 2anbn + b2n)
⇒ a2n+2 + 2an+1 bn+1 b2n+2 = a2n+1 b + 2an+1 bn+1 + ab2n+1
⇒ a2n+2 + b2n+2 = a2n+1 b + ab2n+1
⇒ a2n+2 - a2n+1 b = ab2n+1 - b2n+2
⇒ a2n+1 (a - b) = b2n+1 (a - b)
(ab)2n+1=1=(ab)0⇒(\frac{a }{ b})^{2n + 1}=1 = (\frac{a }{b})^0
⇒ 2n + 1 = 0
n=12⇒ n = \frac{- 1 }{ 2}