Question
Mathematics Question on geometric progression
Find the value of n so that an+bnan+1+bn+1n may be the geometric mean between a and b.
Answer
G. M. of a and b is √ab.
By the given condition, an+bnan+1+bn+1=ab
Squaring both sides, we obtain
(an+bn)2(an+1+bn+1)2=ab
⇒ a2n+2 + 2an+1 bn+1 + b2n+2 = (ab) (a2n + 2anbn + b2n)
⇒ a2n+2 + 2an+1 bn+1 b2n+2 = a2n+1 b + 2an+1 bn+1 + ab2n+1
⇒ a2n+2 + b2n+2 = a2n+1 b + ab2n+1
⇒ a2n+2 - a2n+1 b = ab2n+1 - b2n+2
⇒ a2n+1 (a - b) = b2n+1 (a - b)
⇒(ba)2n+1=1=(ba)0
⇒ 2n + 1 = 0
⇒n=2−1