Solveeit Logo

Question

Question: Find the value of \[{}^n{C_r} + {}^n{C_{r - 1}}\]:...

Find the value of nCr+nCr1{}^n{C_r} + {}^n{C_{r - 1}}:

Explanation

Solution

Here we will use the combination formula for expanding the terms which state that nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} where nn is the total number of items in the set and rr is the selected ones from that set.

Complete step-by-step answer:
Step 1: By expanding the term nCr+nCr1{}^n{C_r} + {}^n{C_{r - 1}} as nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} , nCr1=n!(r1)!(n(r1))!{}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - \left( {r - 1} \right)} \right)!}}and writing the term as below:
nCr+nCr1=n!r!(nr)!+n!(r1)!(n(r1))!{}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} + \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - \left( {r - 1} \right)} \right)!}}
Taking n!(r1)!(nr)!\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}} common in RHS side of nCr+nCr1=n!r!(nr)!+n!(r1)!(n(r1))!{}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} + \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - \left( {r - 1} \right)} \right)!}}, we get:
nCr+nCr1=n!(r1)!(nr)!(1r+1nr+1)\Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r + 1}}} \right) ………… (1)
Step 2: Now in the above equation (1), by multiplying and dividing the two fractions inside the bracket using common factors. We ensure that denominators are the same:
nCr+nCr1=n!(r1)!(nr)!(1(nr+1)r(nr+1)+1rr(nr+1))\Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{1 \cdot \left( {n - r + 1} \right)}}{{r\left( {n - r + 1} \right)}} + \dfrac{{1 \cdot r}}{{r\left( {n - r + 1} \right)}}} \right)………… (2)
Now, in the above equation (2) by multiplying the factors and adding the two fractions we get:
nCr+nCr1=n!(r1)!(nr)!(nr+1+rr(nr+1))\Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{n - r + 1 + r}}{{r\left( {n - r + 1} \right)}}} \right)
By simplifying inside the brackets, we get:
nCr+nCr1=n!(r1)!(nr)!(n+1r(nr+1))\Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{n + 1}}{{r\left( {n - r + 1} \right)}}} \right)……….. (3)
Step 3: Now, we can write n!×(n+1)=(n+1)!n! \times \left( {n + 1} \right) = \left( {n + 1} \right)!, r×(r1)!=r!r \times \left( {r - 1} \right)! = r! and (nr)!×(nr+1)=(nr+1)!\left( {n - r} \right)! \times \left( {n - r + 1} \right) = \left( {n - r + 1} \right)! substituting these values in the above expression (3):
nCr+nCr1=(n+1)!r!(nr+1)!\Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{\left( {n + 1} \right)!}}{{r!\left( {n - r + 1} \right)!}}
Step 4: By comparing the above term (n+1)!r!(nr+1)!\dfrac{{\left( {n + 1} \right)!}}{{r!\left( {n - r + 1} \right)!}} from the combination formula pCq=p!q!(pq)!{}^p{C_q} = \dfrac{{p!}}{{q!\left( {p - q} \right)!}}, the final result will be:
nCr+nCr1=n+1Cr\Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}

So, the answer is n+1Cr{}^{n + 1}{C_r}.

Note: Students can also try to solve these types of the problem by using the pascal formula which states for any positive natural numbers pp and qq with pqp \geqslant q:
pCq+pCq1=p+1Cq{}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q} where pCq=p!q!(pq)!{}^p{C_q} = \dfrac{{p!}}{{q!\left( {p - q} \right)!}}, pCq1=p!(q1)!(p(q1))!{}^p{C_{q - 1}} = \dfrac{{p!}}{{\left( {q - 1} \right)!\left( {p - \left( {q - 1} \right)} \right)!}} and p+1Cq=(p+1)!(q)!(p+1q)!{}^{p + 1}{C_q} = \dfrac{{\left( {p + 1} \right)!}}{{\left( q \right)!\left( {p + 1 - q} \right)!}}
Step 1: We need to find the value of nCr+nCr1{}^n{C_r} + {}^n{C_{r - 1}}. By applying combination rule here which states that:
To calculate the total number of outcomes of an event where nnrepresents the total number of items in the set and rrrepresents the number of selected items being chosen at a time and CC states for combination:
nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}
Step 2: Now, for finding the value of the term nCr+nCr1{}^n{C_r} + {}^n{C_{r - 1}} , we will use the pascal rule which states that for pqp \geqslant q and pp & qq are positive natural numbers:
pCq+pCq1=p+1Cq\Rightarrow {}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}
Step 3: By comparing the term nCr+nCr1{}^n{C_r} + {}^n{C_{r - 1}} with the pascal formula pCq+pCq1=p+1Cq{}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q} , we can write the expression as below:
nCr+nCr1=n+1Cr (by using pascal’s rule)\Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}{\text{ (}}\because {\text{by using pascal's rule)}}
Where, p=np = n and q=rq = r.
Students should not confuse between the permutation and combination formula. There is a major difference between the formula for both terms:
Permutation formula: nPr=n!(nr)!{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}, Combination formula: nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} .