Solveeit Logo

Question

Question: Find the value of n by solving the equation \(\dfrac{{^{\text{n}}{{\text{P}}_{\text{4}}}}}{{^{{\text...

Find the value of n by solving the equation nP4n - 1P4 = 53\dfrac{{^{\text{n}}{{\text{P}}_{\text{4}}}}}{{^{{\text{n - 1}}}{{\text{P}}_{\text{4}}}}}{\text{ = }}\dfrac{{\text{5}}}{{\text{3}}} where, n>4.

Explanation

Solution

Hint: In order to solve this problem you need to know the formula aPb = a!(a - b)!^{\text{a}}{{\text{P}}_{\text{b}}}{\text{ = }}\dfrac{{{\text{a!}}}}{{{\text{(a - b)!}}}}. Using this formula you will get the right answer to this question.

Complete step-by-step answer:
We need to find the value of n.
We have the equation nP4n - 1P4 = 53\dfrac{{^{\text{n}}{{\text{P}}_{\text{4}}}}}{{^{{\text{n - 1}}}{{\text{P}}_{\text{4}}}}}{\text{ = }}\dfrac{{\text{5}}}{{\text{3}}}.
We know the formula aPb = a!(a - b)!^{\text{a}}{{\text{P}}_{\text{b}}}{\text{ = }}\dfrac{{{\text{a!}}}}{{{\text{(a - b)!}}}}………….(1)
So, we will expand only LHS of the equation nP4n - 1P4 = 53\dfrac{{^{\text{n}}{{\text{P}}_{\text{4}}}}}{{^{{\text{n - 1}}}{{\text{P}}_{\text{4}}}}}{\text{ = }}\dfrac{{\text{5}}}{{\text{3}}} with the help of (1).
So, nP4n - 1P4=n!(n4)!(n1)!(n14)!=n!×(n5)!(n4)!×(n1)!=nn4.....................(2)\dfrac{{^{\text{n}}{{\text{P}}_{\text{4}}}}}{{^{{\text{n - 1}}}{{\text{P}}_{\text{4}}}}} = \dfrac{{\dfrac{{n!}}{{(n - 4)!}}}}{{\dfrac{{(n - 1)!}}{{(n - 1 - 4)!}}}} = \dfrac{{n!\, \times \,(n - 5)!}}{{(n - 4)!\, \times \,(n - 1)!}} = \dfrac{n}{{n - 4}}\,\,\,\,\,\,.....................(2)
From (1) and (2) we can do,
nn - 4 = 53 3n = 5n - 20 2n = 20 n = 10  \dfrac{{\text{n}}}{{{\text{n - 4}}}}{\text{ = }}\dfrac{{\text{5}}}{{\text{3}}} \\\ {\text{3n = 5n - 20}} \\\ {\text{2n = 20}} \\\ {\text{n = 10}} \\\
Hence the value of n is 10.

Note: In this type of questions students may confuse with the formulas of aPb^{\text{a}}{{\text{P}}_{\text{b}}} and nCr^{\text{n}}{{\text{C}}_{\text{r}}}.