Solveeit Logo

Question

Question: Find the value of ![](https://cdn.pureessence.tech/canvas_664.png?top_left_x=1058&top_left_y=1475&wi...

Find the value of dx by first principle rule –

A

13\frac { 1 } { 3 }(a3 – b3)

B

13\frac { 1 } { 3 } (b3 – a3)

C

12\frac { 1 } { 2 } (a3 – b3)

D

None of these

Answer

13\frac { 1 } { 3 } (b3 – a3)

Explanation

Solution

Here ƒ(x) = x2, nh = b – a from the definition,

= Limh0\operatorname { Lim } _ { \mathrm { h } \rightarrow 0 } h r=0n1(a+rh)2\sum _ { r = 0 } ^ { \mathrm { n } - 1 } ( \mathrm { a } + \mathrm { rh } ) ^ { 2 }

= h r=0n1(a2+2ahr+h2r2)\sum _ { r = 0 } ^ { \mathrm { n } - 1 } \left( \mathrm { a } ^ { 2 } + 2 \mathrm { ahr } + \mathrm { h } ^ { 2 } \mathrm { r } ^ { 2 } \right)

= h

= h {a2n+2ah(n1)n2+h2(n1)n(2n1)6}\left\{ a ^ { 2 } n + 2 a h \frac { ( n - 1 ) n } { 2 } + \frac { h ^ { 2 } ( n - 1 ) n ( 2 n - 1 ) } { 6 } \right\}

= h {a2(nh)+a(nh)(nhh)+(nhh)(nh)(2nhh)6}\left\{ \mathrm { a } ^ { 2 } ( \mathrm { nh } ) + \mathrm { a } ( \mathrm { nh } ) ( \mathrm { nh } - \mathrm { h } ) + \frac { ( \mathrm { nh } - \mathrm { h } ) ( \mathrm { nh } ) ( 2 \mathrm { nh } - \mathrm { h } ) } { 6 } \right\}

=

= a2 (b – a) + a (b – a)2 + (ba)33\frac { ( b - a ) ^ { 3 } } { 3 }

= (ba)3\frac { ( b - a ) } { 3 }{b2 + ab + a2}

= 13\frac { 1 } { 3 } (b3 – a3).